Все о тюнинге авто

Щелочноземельные металлы характеризуют следующие признаки радиус. Химические свойства щелочноземельных металлов. Применение щелочноземельных металлов. Физические свойства щелочноземельных металлов. Металлы главных подгрупп I и II групп. Жесткость воды

Элементы подгруппы кальция но­сят название щелочноземельных металлов. Происхождение этого названия связано с тем, что их окислы («земли» алхимиков) сообщают воде щелочную реакцию. К щёлочноземельным металлам чаще относят только кальций, стронций, барийи радий , реже магний. Первый элемент этой подгруппы, бериллий, по большинству свойств гораздо ближе к алюминию.

Распространённость:

На долю кальция приходится 1,5% общего числа атомов земной коры, тогда как содержание в ней радия очень мало (8- 10 -12 %). Про­межуточные элементы - стронций (0,008) и барий (0,005%)-стоят ближе к кальцию. Барий открыт в 1774 г., стронций - в 1792 г. Элементарные Ca, Sr и Ва впервые получены в 1808 г. Природный кальци й слагается из изо­топов с массовыми числами 40 (96,97%), 42 (0,64), 43 (0,14), 44 (2,06), 46 (0,003), 48 (0,19); стронций - 84 (0,56%), 86 (9,86), 87 (7,02), 88 (82,56); барий -130 (0,10%), 132 (0,10), 134 (2,42), 135 (6,59), 136 (7,81), 137 (11,32), 138 (71,66). Из изотопов радия основ­ное значение имеет встречающийся в природе 226 Ra (средняя продолжительность жизни ато­ма 2340 лет).

Соединения кальция (известняк, гипс) были известны и практически исполь­зовались еще в глубокой древности. Помимо различных силикатных пород Са, Sr и Ва встречаются главным образом в виде своих труднорастворимых углекислых и серно­кислых солей, каковыми являются минералы:

СаС0 3 - кальцит CaS0 4 - ан гидрит

SrC0 3 - стронцианит SrS0 4 - целестин

ВаС0 3 - витерит BaS0 4 - тяжелый шпат

CaMg(CO 3) 2 - доломит MgCO 3 - магнезит

Углекислый кальций в виде известняка и мела иногда обра­зует целые горные хребты. Значительно реже встречается окристаллизованная форма СаСО 3 - мрамор. Для сернокислого кальция наибо­лее типично нахождение в виде минерала гипса (CaSO 4 2Н 2 0), ме­сторождения которого нередко обладают громадной мощностью. Кроме перечисленных выше важным минералом кальция является флюо­рит -CaF 2 , используемый для получения плавиковой кислоты по уравнению:

CaF 2 +H 2 SO 4(конц.) →CaSO 4 +HF

Для стронция и бария сернокислые минералы более распространены, чем углекислые. Первичные месторождения радия связаны с урановыми рудами (причем на 1000 кг урана руда содержит лишь 0,3 г радия).

Получение:

Алюмотермическое получение свободных щелочноземельных металлов прово­дится при температурах около 1200 °С по схеме:

ЗЭ0 + 2А l =Аl 2 O 3 +ЗЭ

накаливанием их окислов с металлическим алюминием в высоком ва­кууме. При этом щелочноземельный металл отгоняется и оседает на более холодных частях установки. В большом масштабе (порядка тысяч тонн ежегодно) вырабатывается лишь кальций, для получения которого пользуются также электролизом расплавленного СаСl 2 . Процесс алюмотермии сложен тем, что при нем происходит частичное сплавление с Al 2 O 3 .Например, в случае кальция реакция идет по уравнению:

3СаО + Аl 2 O 3 →Сa 3 (АlO 3) 2

Может иметь место также частичное сплавление образующегося щелочноземельного ме­талла с алюминием.

Электролизер для получения металлического кальция представляет собой печь с внутренней графи­товой обкладкой, охлаждаемой снизу проточной водой. В печь загружается безводный СаСl 2 , а электродами служат железный катод и графитовые аноды. Процесс ведут при на­пряжении 20-30В, силе тока до 10 тыс. ампер, низ­кой температуре (около 800 °С). Благодаря последнему обстоятельству графитовая обкладка печи остается все время покрытой защитным слоем твердой соли. Так как кальций хорошо осаждается лишь при достаточно большой плотности тока на катоде (порядка 100 а/см 3), последний по мере хода электролизе постепенно поднимают кверху, с тем чтобы погруженным в расплав оставался лишь его конец. Таким образом, фактически катодом является сам металлический кальций (который изолируется от воздуха застывшей солевой коркой).Очистка его проводится обычно путем перегонки в ва­кууме или в атмосфере аргона.

Физические свойства:

Кальций и его аналоги представляют собой ковкие серебристо-белые металлы. Из них сам кальций довольно тверд, стронций и особенно барий значительно мягче. Некоторые константы щелочноземельных ме­таллов сопоставлены ниже:

Плотность, г/см 3

Температура плавления, °С

Температура кипения, °С

Летучие соединения щелочноземельных металлов окрашивают пламя в характерные цвета: Са - в оранжево-красный (кирпичный), Sr и Ra - в карминово-красный, Ва - в желтовато-зеленый. Этим пользуются при химических анализах для открытия рассматриваемых элементов.

Химические свойства :

На воздухе кальций и его аналоги покрываются пленкой, наряду с нормальными окислами (ЭО) частично содержащей также перекиси (Э0 2) и нитриды (Э 3 N 2). В ряду напряжений щелочноземельные ме­таллы располагаются левее магния и поэтому легко вытесняют водород не только из разбавленных кислот, но и из воды. При переходе от Са к Ra энергичность взаимодействия увеличивается. В своих соединениях рассматриваемые элементы двухвалентны. С металлоидами щелочноземельные металлы соединяются весьма энергично и с значительным выделением тепла.

· Обычно при взаимодействии ЩЗМ(щелочноземельные) металлов с кислородом, указывают образование оксида:

2Э +O 2 →2ЭO

Важно знать тривиальные названия нескольких соединений:

белильная, хлорная (хлорка) – CaCl 2 ∙ Ca(ClO) 2

гашёная (пушонка) – Ca(OH) 2

извёстка – смесь Ca(OH) 2 , песка и воды

известковое молоко – суспензия Ca(OH) 2 в известковой воде

натронная – смесь твёрдых NaOH и Ca(OH) 2 или CaO

негашёная (кипелка) – СаО

· Взаимодействие с водой, на примере кальция и его оксида:

Ca+2H 2 O→Ca(OH) 2 +H 2

CaO+H 2 O→Ca(OH) 2 +16 ккал("гашение"извести)

При взаимодействии с кислотами окислы и гидроокиси щелочнозе­мельных металлов легко образуют соответствующие соли, как правило, бесцветные.

Это интересно:

Если при гашении извести заменить воду раство­ром NaOH, то получается так называемая натронная известь. Практически при ее выработке к концентри­рованному раствору едкого натра добавляют измельчен­ную СаО (в весовом соотношении 2:1 к NaOH). После перемешивания образующейся массы ее выпаривают до­суха в железных сосудах, слабо прокаливают и затем измельчают. Натронная известь представляет собой тесную смесь Са(ОН) 2 с NaOH и широко применяется в лабора­ториях для поглощения углекислого газа.

Наряду с нормальными окислами для элементов подгруппы каль­ция известны белые перекиси типа Э0 2 . Практическое значение из них имеет перекись бария (Ва0 2), применяемая, в частности, как ис­ходный продукт для получения перекиси водорода:

BaO 2 + H 2 SO 4 =BaSO 4 + H 2 O 2

Технически Ва0 2 получают нагреванием ВаО в токе воздуха до 500 °С. При этом происходит присоединение кислорода по реакции

2ВаО +O 2 = 2BaO 2 + 34 ккал

Дальнейшее нагревание ведет, наоборот, к распаду Ва0 2 на окись бария и кислород. Поэтому сжигание металлического бария сопровождается образованием только его окиси.

· Взаимодействие с водородом, с образованием гидридов:

Гидриды ЭН 2 не растворяются (без разложения) ни в одном из обычных растворителей. С водой (даже ее следами) они энергично реагируют по схеме:

ЭH 2 + 2H 2 O = Э(OH) 2 + 2H 2

Реакция эта может служить удобным методом получения водорода, так как для своего проведения требует кроме СаН 2 (1 кг которого дает приблизительно 1 м 3 Н 2) только воду. Она сопровождается настолько значительным выделением тепла, что смоченный небольшим количеством воды СаН 2 самовоспламеняется на воздухе. Еще энергичнее протекает взаимодействие гидридов ЭН 2 с разбавленными кислотами. Напротив, со спиртами они реагируют спокойнее, чем с водой:

CaH 2 +2HCl→СаСl 2 +2H 2

CaH 2 +2ROH→2RH+Ca(OH) 2

3CaH 2 +N 2 → Ca 3 N 2 +ЗH 2

CaH 2 +O 2 →CaO+H 2 O

Гидрид кальция используется в качестве эффективного осушителя жидкостей и газов. Он успешно применяется также для количественного определения содержания воды в органических жидкостях, кристаллогидратах и т. д.

· Напрямую могу взаимодействовать с неметаллами:

Ca+Cl 2 →CaCl 2

· Взаимодействие с азотом. Э 3 N 2 белые тугоплавкие тела. Очень медленно образуются уже при обычных условиях:

3Э+N 2 →Э 3 N 2

Водой разлагаются по схеме:

Э 3 N 2 +6H 2 O→3Ca(OH) 2 +2NH 3

4Э 3 N 2 →N 2 +3Э 4 N 2)(для Ba и Sr субнитриды)

Э 4 N 2 +8H 2 O→4Э(OH) 2 +2NH 3 +H 2

Ba 3 N 2 +2N 2 →3 Ba N 2 (пернитрид бария)

При взаимодействии с разбавленными кислотами эти пернитриды наряду с двумя молекулами аммиака отщепляют и молекулу свободного азота:

Э 4 N 2 +8HCl→4ЭСl 2 +2NH 3 +H 2

Э 3 N 2 +ЗСО = 3ЭO+N 2 +ЗС

Иначе идет реакция в случае бария:

B a 3 N 2 +2СО = 2ВаО + Ba(CN) 2

Это интересно :

Э+NH 3(жидкий) →(Э(NH 2) 2 +H 2 +ЭNH+H 2)

4Э(NH 2) 2 → ЭN 2 +2H 2

Интересно, что Э(NH 3) 6 - аммиакаты образуются при взаимодействии элементов с газообразным аммиаком, и способны разлагаться по схеме:

Э(NH 3) 6 →Э(NH 2) 2 +4NH 3 +H 2

Дальнейшее нагревание:

Э(NH 2) 2 →ЭNH+NH 3

3ЭNH→NH 3 +Э 3 N 2

Но взаимодействие металла с аммиаком при высокой температуре протекает по схеме:

6Э+2 NH 3 →Э H 2 +Э 3 N 2

Нитриды способны присоединять галогениды:

Э 3 N 2 +ЭHal 2 →2Э 2 NHal

· Оксиды ЩЗМ и гидроокиси проявляют основные свойства, за исключением бериллия:

CaO +2 HCl →СаС l 2 +H 2 O

Ca(OH) 2 +2HCl→ СаС l 2 +2H 2 O

Be+2NaOH+2H 2 O→Na 2 +H 2

BeO+2HCl→Be С l 2 +H 2 O

BeO+2NaOH→Na 2 BeO 2 +H 2 O

· Качественные реакции на катионы ЩЗМ.В большинстве изданий указывают только качественные реакции на Ca 2+ и Ba 2+ .Рассмотрим их сразу в ионной форме:

Ca 2+ +CO 3 2- →CaCO 3 ↓ (белый осадок)

Ca 2+ +SO 4 2- →CaSO 4 ↓ (белый хлопьевидный осадок)

CaCl 2 + (NH 4) 2 C 2 O 4 →2NH 4 Cl + CaC 2 O 4 ↓

Ca 2+ +C 2 O 4 2- → CaC 2 O 4 ↓(белый осадок)

Ca 2+ -окрашивание пламени в кирпичный цвет

Ba 2+ +CO 3 2- →BaCO 3 ↓ (белый осадок)

Ba 2+ +SO 4 2- →BaSO 4 ↓(белый осадок)

Ba 2+ +CrO 4 2- →BaCrO 4 ↓(желтый осадок, аналогично для стронция)

Ba 2+ +Cr 2 O 7 2- +H 2 O→2BaCrO 4 +2H + (желтый осадок, аналогично для стронция)

Ba 2+ - окрашивание пламени в зелёный цвет.

Применение:

Промышленное применение находят почти исключительно соеди­нения рассматриваемых элементов, характерные свойства которых и определяют области их использования. Исключение представляют соли радия, практическое значение которых связано с их общим свойством - радиоактивностью. Практическое использование (главным образом в металлургии) нахо­дит почти исключительно кальций.Нитрат кальция широко применяется в качестве азотсодержащего минерального удобрения. Нитраты строн­ция и бария служат в пиротехнике для изготовления составов, сгораю­щих красным (Sr) или зеленым (Ва) пламенем.Применение отдельных природных разновидностей СаС0 3 различно. Известняк непосредственно используется при строительных работах, а также служит исходным сырьем для получения важнейших строи­тельных материалов - извести и цемента. Мел потребляется в качестве минеральной краски, как основа составов для полировки и т. д. Мрамор является прекрасным материалом для скульптурных работ, изго­товления электрических распределительных щитов и т.д. Практическое применение находит главным образом природный СаF 2 , который широко используется в керамической промышленности, служит исходным материалом для получении HF.

Безводный СаСl 2 ввиду его гигроскопичности часто используется в качестве осушающего средства. Весьма разнообразны медицинские применения растворов хлористого кальция (внутрь и внутривенно). Хлористый барий употребляется дли борьбы с вредителями сельского хозяйства и как важный реактив (на ион SO 4 2-) в химических лабораториях.

Это интересно:

Если 1 вес. ч. насыщенного раствора Са(СН 3 СОО) 2 быстро влить в сосуд, содержащий 17 вес. ч. этилового спирта, то вся жидкость тотчас же затвердевает. Получаемый подобным путем «сухой спирт» после поджигания медленно сгорает не коптящим пламенем. Такое топливо особенно удобно для туристов.

Жёсткость воды.

Содержание в природной воде солей кальция и магния часто оце­нивают, говоря о той или иной ее «жесткости». При этом различают жесткость карбонатную («временную») и некарбонатную («постоянную»). Первая обусловлена присутствием Са(НС0 3) 2 , реже Mg(HC0 3) 2 . Временной она названа потому, что может быть устранена простым кипячением воды: бикарбонаты при этом разрушаются, и не­растворимые продукты их распада (карбонаты Са и Mg) оседают на стенках сосуда в виде накипи:

Ca(HCO 3) 2 →CaCO 3 ↓+CO 2 +H 2 O

Mg(HCO 3) 2 →MgCO 3 ↓+CO 2 +H 2 O

Постоянная жесткость воды обусловлена присутствием в ней солей кальция и магния, не дающих осадка при кипячении. Наиболее обычны сульфаты и хлориды. Из них особое значение имеет малорастворимый CaS0 4 , который оседает в виде очень плотной накипи.

При работе парового котла на жесткой воде его нагреваемая по­верхность покрывается накипью. Так как последняя плохо проводит тепло, прежде всего становится неэкономичной сама работа котла: уже слой накипи толщиной 1 мм повышает расход топлива приблизительно на 5%. С другой стороны, изолированные от воды слоем накипи стенки котла могут нагреться до весьма высоких температур. При этом железо постепенно окисляется и стенки теряют прочность, что может повести к взрыву котла. Так как паросиловое хозяйство существует во многих промышленных предприятиях, вопрос о жесткости воды весьма практи­чески важен.

Так как очистка воды от растворенных солей при помощи перегонки слишком дорога, в местностях с жесткой водой для ее «умягчения» пользуются химическими методами. Карбонатную жесткость обычно устраняют, прибавляя к воде Са(ОН) 2 в количестве, строго отвечающем найденному по анализу содержанию бикарбонатов. При этом по реакции

Ca(HCO 3) 2 + Са(ОН) 2 = 2CaCO 3 ↓ + 2H 2 O

весь бикарбонат переходит в нормальный карбонат и осаждается. От некарбонатной жесткости чаще всего освобождаются добавлением к воде соды, которая вызывает образование осадка по реакции:

СaSO 4 + Na 2 CO 3 = CaCO 3 ↓ + Na 2 SO 4

Воде дают затем отстояться и лишь после этого пользуются ею для пи­тания котлов или в производстве. Для умягчения небольших количеств жесткой воды (в прачечных и т. п.) обычно добавляют к ней немного соды и дают отстояться. При этом кальций и магний полностью оса­ждаются в виде карбонатов, а остающиеся в растворе соли натрия не мешают.

Из изложенного следует, что содой можно пользоваться для устра­нения и карбонатной, и некарбонатной жесткости. Тем не менее втехнике все же стараются при возможности применять именно Са(ОН) 2 , что обусловлено гораздо большей дешевизной этого продукта сравни­тельно с содой

И карбонатная, и некарбонатная жесткость воды оценивается суммарным числом содержащихся в одном литре миллиграмм-эквивалентов Са и Mg (мг-экв/л). Сумма временной и постоянной жесткости определяет общую жесткость воды. Последняя характеризуется по данному признаку следующими наименованиями: мяг­кая (<4), средне жёсткая (4-8), жесткая (8-12), очень жесткая (>12 мг-экв/л). Жесткость отдельных естественных вод колеблется в весьма широких пределах. Для открытых водоемов она часто зависит от времени года и даже погоды. Наиболее «мягкой» природной водой является атмосферная (дождь, снег), почти не содержащая растворенных солей. Интересно имеющееся указание на то, что сердечные заболевания более распространены в местностях с мягкой водой.

Для полного умягчения воды вместо соды часто применяют Na 3 PO 4 , осаж­дающий кальций и магний в виде их труднорастворимых фосфатов:

2Na 3 PO 4 +3Ca(HCO 3) 2 →Ca 3 (PO 4) 2 ↓+6NaHCO 3

2Na 3 PO 4 +3Mg(HCO 3) 2 →Mg 3 (PO 4) 2 ↓+6NaHCO 3

Для расчета жёсткости воды есть специальная формула:

Где 20,04 и 12,16 эквивалентные массы кальция и магния соответственно.

Редактор: Харламова Галина Николаевна

Рассмотрим химические свойства щелочноземельных металлов. Определим особенности их строения, получения, нахождения в природе, применение.

Положение в ПС

Для начала определим расположение этих элементов в Менделеева. Они располагаются во второй группе главной подгруппе. К ним относят кальций, стронций, радий, барий, магний, бериллий. Все они на содержат по два валентных электрона. В общем виде бериллий, магний и щелочноземельные металлы на внешнем уровне имеют ns2 электронов. В химических соединениях они проявляют степень окисления +2. Во время взаимодействия с другими веществами они проявляют восстановительные свойства, отдавая электроны с внешнего энергетического уровня.

Изменение свойств

По мере возрастания ядра атома бериллий, магний и усиливают свои металлические свойства, так как наблюдается возрастание радиуса их атомов. Рассмотрим физические свойства щелочноземельных металлов. Бериллий в обычном состоянии является металлом серого цвета со стальным блеском. Он имеет плотную гексагональную кристаллическую решетку. При контакте с кислородом воздуха, бериллий сразу же образует оксидную пленку, в результате чего снижается его химическая активность, образуется матовый налет.

Физические свойства

Магний в качестве простого вещества является белым металлом, образующим на воздухе оксидное покрытие. Он имеет гексагональную кристаллическую решетку.

Физические свойства щелочноземельных металлов кальция, бария, стронция схожи. Они представляют собой металлы с характерным серебристым блеском, покрывающиеся под воздействием кислорода воздуха желтоватой пленкой. У кальция и стронция кубическая гранецентрированная решетка, барий имеет объемно-центрированную структуру.

Химия щелочноземельных металлов основывается на том, что у них металлический характер связи. Именно поэтому они отличаются высокой электрической и тепло проводимостью. Температуры их плавления и кипения больше, чем у щелочных металлов.

Способы получения

Производство бериллия в промышленных объемах осуществляется путем восстановления металла из фторида. Условием протекания данной химической реакции является предварительное нагревание.

Учитывая, что щелочноземельные металлы в природе находятся в виде соединений, для получения магния, стронция, кальция проводят электролиз расплавов их солей.

Химические свойства

Химические свойства щелочноземельных металлов связаны с необходимостью предварительного устранения с их поверхности слоя оксидной пленки. Именно она определяет инертность данных металлов к воде. Кальций, барий, стронций при растворении в воде образуют гидроксиды, имеющие ярко выраженные основные свойства.

Химические свойства щелочноземельных металлов предполагают их взаимодействие с кислородом. Для бария продуктом взаимодействия является пероксид, для всех остальных после реакции образуются оксиды. У всех представителей данного класса оксиды проявляют основные свойства, только для оксида бериллия характерны амфотерные свойства.

Химические свойства щелочноземельных металлов проявляются и в реакции с серой, галогенами, азотом. При реакциях с кислотами, наблюдается растворение данных элементов. Учитывая, что бериллий относится к амфотерным элементам, он способен вступать в химическое взаимодействие с растворами щелочей.

Качественные реакции

Основные формулы щелочноземельных металлов, рассматриваемые в курсе неорганической химии, связаны с солями. Для выявления представителей данного класса в смеси с другими элементами, можно использовать качественное определение. При внесении солей щелочноземельных металлов в пламя спиртовки, наблюдается окрашивание пламени катионами. Катион стронция дает темный красный оттенок, катион кальция - оранжевый цвет, а катион бария зеленый тон.

Для выявления катиона бария в качественном анализе используют сульфат анионы. В результате данной реакции образуется сульфат бария белого цвета, который нерастворим в неорганических кислотах.

Радий является радиоактивным элементом, который в природе содержится в незначительных количествах. При взаимодействии магния с кислородом, наблюдается ослепительная вспышка. Данный процесс некоторое время применяли во время фотографирования в темных помещениях. Сейчас на смену магниевым вспышкам пришли электрические системы. К семейству щелочноземельных металлов относится бериллий, который реагирует со многими химическими веществами. Кальций и магний аналогично алюминию, могут восстанавливать такие редкие металлы, как титан, вольфрам, молибден, ниобий. Данные называют кальциетермией и магниетермией.

Особенности применения

Каково применение щелочноземельных металлов? Кальций и магний используют для изготовления легких сплавов и редких металлов.

К примеру, магний содержится в составе дюралюминия, а кальций - это компонент свинцовых сплавов, используемых для получения оболочек кабелей и создания подшипников. Широко применение щелочноземельных металлов в технике в виде оксидов. (оксид кальция) и жженая магния (оксид магния) требуются для строительной сферы.

При взаимодействии с водой оксида кальция происходит выделение существенного количества теплоты. (гидроксид кальция) применяется для строительства. Белая взвесь данного вещества (известковое молоко) применяют в сахарной промышленности для процесса очистки свекловичного сока.

Соли металлов второй группы

Соли магния, бериллия, щелочноземельных металлов можно получить путем взаимодействия с кислотами их оксидов. Хлориды, фториды, иодиды данных элементов являются белыми кристаллическими веществами, в основном хорошо растворимыми в воде. Среди сульфатов растворимостью обладают только соединения магния и бериллия. Наблюдается ее снижение от солей бериллия к сульфатам бария. Карбонаты практически не растворяются в воде либо имеют минимальную растворимость.

Сульфиды щелочноземельных элементов в незначительных количествах содержатся в тяжелых металлах. Если направить на них освещение, можно получить различные цвета. Сульфиды включаются в состав светящихся составов, именуемых фосфорами. Применяют подобные краски для создания светящихся циферблатов, дорожных знаков.

Распространенные соединения щелочноземельных металлов

Карбонат кальция является самым распространенным на земной поверхности элементом. Он является составной частью таких соединений, как известняк, мрамор, мел. Среди них основное применение имеет известняк. Этот минерал незаменим в строительстве, считается отличным строительным камнем. Кроме того, из данного неорганического соединения получают негашеную и гашеную извести, стекло, цемент.

Применение известковой щебенки способствует укреплению дорог, а благодаря порошку можно снизить кислотность почвы. представляет собой раковины древнейших животных. Данное соединение используют для изготовления резины, бумаги, создания школьных мелков.

Мрамор востребован у архитекторов, скульпторов. Именно из мрамора были созданы многие уникальные творения Микеланджело. Часть станций московского метро облицована именно мраморными плитками. Карбонат магния в больших объемах используется при изготовлении кирпича, цемента, стекла. Он нужен в металлургической промышленности для удаления пустой породы.

Сульфат кальция, содержащийся в природе в виде гипса (кристаллогидрата сульфата кальция), применяется в строительной отрасли. В медицине данное соединение применяется для изготовления слепков, а также для создания гипсовых повязок.

Алебастр (полуводный гипс) при взаимодействии с водой выделяет огромное количество тепла. Это также применяется в промышленности.

Английская соль (сульфат магния) применяется в медицине в виде слабительного средства. Данное вещество обладает горьким вкусом, оно обнаружено в морской воде.

«Баритовая каша» (сульфат бария) не растворяется в воде. Именно поэтому данную соль применяют в рентгенодиагностике. Соль задерживает рентгеновские лучи, что позволяет выявлять заболевания желудочно-кишечного тракта.

В составе фосфоритов (горной породы) и апатитов есть фосфат кальция. Они нужны для получения соединений кальция: оксидов, гидроксидов.

Кальций играет для живых организмов особое значение. Именно этот металл необходим для построения костного скелета. Ионы кальция необходимы для регулировки работы сердца, повышения свертываемости крови. Недостаток его вызывает нарушения в работе нервной системы, потере свертываемости, утрате способности рук нормально держать различные предметы.

Для того чтобы избежать проблем со здоровьем, каждые сутки человек должен потреблять примерно 1,5 грамма кальция. Основная проблема заключается в том, что для того, чтобы организм усваивал 0,06 грамма кальция, необходимо съедать 1 грамм жира. Максимальное количество данного металла содержится в салате, петрушке, твороге, сыре.

Заключение

Все представители второй группы главной подгруппы таблицы Менделеева необходимы для жизни и деятельности современного человека. Например, магний является стимулятором обменных процессов в организме. Он должен присутствовать в нервной ткани, крови, костях, печени. Магний является активным участником и фотосинтеза у растений, так как он является составной частью хлорофилла. Кости человека составляют примерно пятую часть от общего веса. Именно в них содержится кальций и магний. Оксиды, соли щелочноземельных металлов нашли разнообразное применение в строительной сфере, фармацевтике и медицине.

Вторая группа периодической системы Д. И. Менделеева содержит группу элементов, очень похожих по своим свойствам на щелочные металлы, однако уступающих им по активности. В нее входят бериллий и магний, а также кальций, стронций, барий и радий. Они известны под общим названием - щелочноземельные элементы. В нашей статье мы ознакомимся с их распространением в природе и применением в промышленности, а также изучим важнейшие химические свойства щелочноземельных металлов.

Общая характеристика

Все атомы выше перечисленных элементов содержат на внешнем энергетическом слое по два электрона. Взаимодействуя с другими веществами, они всегда отдают свои отрицательные частицы, переходя в состояние катионов с зарядом 2+. В окислительно-восстановительных реакциях элементы ведут себя как сильные восстановители. По мере увеличения заряда ядра, химические свойства щелочноземельных металлов и их активность усиливаются. На воздухе они быстро окисляются, образуя на своей поверхности оксидную пленку. Общая формула всех оксидов - RO. Им соответствуют гидроксиды с формулой R(OH) 2 . Их основные свойства и растворимость в воде также возрастают с увеличением порядкового номера элемента.

Особые свойства бериллия и магния

По некоторым своим свойствам первые два представителя главной подгруппы второй группы несколько отличаются от других щелочноземельных элементов. Это проявляются, в частности, во время их взаимодействия с водой. Например, химические свойства бериллия таковы, что он вообще не вступает в реакцию с H 2 O. Магний же взаимодействует с водой лишь при нагревании. Зато все щелочноземельные элементы легко реагируют с нею при обычной температуре. Какие же вещества при этом образуются?

Основания щелочноземельных металлов

Являясь активными элементами, кальций, барий и другие представители группы быстро вытесняют водород из воды, в результате получаются их гидроксиды. Взаимодействие щелочноземельных металлов с водой протекает бурно, с выделением тепла. Растворы оснований кальция, бария, стронция мылкие на ощупь, при попадании на кожу и слизистую оболочку глаз вызывают сильные ожоги. Первой помощью в таких случаях будет обработка раневой поверхности слабым раствором уксусной кислоты. Он нейтрализует щелочь и уменьшит риск возникновения некроза поврежденных тканей.

Химические свойства щелочноземельных металлов

Взаимодействие с кислородом, водой и неметаллами - это главный перечень свойств металлов, входящих во вторую группу периодической системы химических элементов. Например, кальций даже в обычных условиях вступает в реакции с галогенами: фтором, хлором, бромом и йодом. При нагревании он соединяется с серой, углеродом и азотом. Жесткое окисление - горение, заканчивается образованием оксида кальция: 2Ca + O 2 = 2 CaO. Взаимодействие металлов с водородом приводит к появлению гидридов. Они представляют собой тугоплавкие вещества белого цвета, имеющие ионные кристаллические решетки. К важным химическим свойствам щелочноземельных металлов относится их взаимодействие с водой. Как уже говорилось ранее, продуктом этой реакции замещения будет гидроксид металла. Отметим также, что в главной подгруппе второй группы наиболее значимое место занимает кальций. Поэтому остановимся на его характеристике подробнее.

Кальций и его соединения

Содержание элемента в земной коре составляет до 3,5%, что указывает на его широкое распространение в составе таких минералов, как известняк, мел, мрамор и кальцит. В состав природного кальция входит шесть видов изотопов. Он также содержится в источниках природной воды. Соединения щелочных металлов подробно изучаются в курсе неорганической химии. Например, на уроках в 9 классе учащиеся узнают, что кальций - это легкий, но прочный металл серебристо-белого цвета. Температура его плавления и кипения выше, чем у щелочных элементов. Основной способ получения - электролиз смеси расплавленных солей хлорида и фторида кальция. К основным химическим свойствам относятся его реакции с кислородом, водой и неметаллами. Из соединений щелочных металлов наибольшее значение для промышленности имеют оксид и основание кальция. Первое соединение получают из мела или известняка методом их выжигания.

Далее из окиси кальция и воды образуется гидроксид кальция. Смесь его с песком и водой называют строительным известковым раствором. Он продолжает применяться в качестве штукатурки и для соединения кирпичей при кладке стен. Раствор гидроксида кальция, называемый известковой водой, используют в качестве реактива для обнаружения углекислого газа. При пропускании двуокиси углерода через прозрачный водный раствор Ca(OH) 2 , наблюдается его помутнение вследствие образования нерастворимого осадка карбоната кальция.

Магний и его характеристика

Химия щелочноземельных металлов изучает свойства магния, акцентируя внимание на некоторых его особенностях. Он представляет собой очень легкий, серебристо-белый металл. Магний, расплавленный в атмосфере с высокой влажностью, активно поглощает из водяного пара молекулы водорода. Остывая, металл практически полностью выделяет их обратно в воздух. Он очень медленно реагирует с водой по причине образования малорастворимого соединения - гидроксида магния. Щелочи на магний не действуют вовсе. Не реагирует металл с некоторыми кислотами: концентрированной сульфатной и плавиковой, вследствие его пассивации и образования на поверхности защитной пленки. Большинство же минеральных кислот растворяют металл, что сопровождается бурным выделением водорода. Магний - сильный восстановитель, он замещает многие металлы из их оксидов или солей:

BeO + Mg = MgO + Be.

Металл вместе с бериллием, марганцем, алюминием применяют в качестве легирующей добавки к стали. Особенно ценными свойствами обладают магнийсодержащие сплавы - электроны. Их используют в самолетостроении и производстве автомобилей, а также в деталях оптической техники.

Роль элементов в жизнедеятельности организмов

Приведем примеры щелочноземельных металлов, соединения которых распространены в живой природе. Магний является центральным атомом в молекулах хлорофилла у растений. Он участвует в процессе фотосинтеза и входит в состав активных центров зеленого пигмента. Атомы магния фиксируют световую энергию, преобразуя ее затем в энергию химических связей органических соединений: глюкозы, аминокислот, глицерина и жирных кислот. Важную роль выполняет элемент в качестве необходимого компонента ферментов, регулирующих обмен веществ в организме человека. Кальций - макроэлемент, обеспечивающий эффективное прохождение электрических импульсов по нервной ткани. Присутствие его фосфорнокислых солей в составе костей и зубной эмали придает им твердость и прочность.

Бериллий и его свойства

К щелочноземельным металлам относятся также бериллий, барий и стронций. Рассмотрим бериллий. Элемент мало распространен в природе, в основном, встречается в составе минералов, например, берилла. Его разновидности, содержащие разноцветные примеси, образуют драгоценные камни: изумруды и аквамарины. Особенностью физических свойств является хрупкость и высокая твердость. Отличительной чертой атома элемента является наличие на втором снаружи энергетическом уровне не восьми, как у всех остальных щелочноземельных металлов, а только двух электронов.

Поэтому радиус атома и иона непропорционально мал, энергия ионизации большая. Это обуславливает высокую прочность кристаллической решетки металла. Химические свойства бериллия также отличают его от других элементов второй группы. Он реагирует не только с кислотами, но и с растворами щелочей, вытесняя водород и, образуя гидроксобериллаты:

Be + 2NaOH + 2H 2 O = Na 2 + H 2 .

Металл имеет ряд уникальных характеристик. Благодаря способности пропускать рентгеновские лучи, его применяют для изготовления окошек рентгеновских трубок. В ядерной промышленности элемент считается наилучшим замедлителем и отражателем нейтронов. В металлургии он применяется как ценная легирующая добавка, повышающая антикоррозионные свойства сплавов.

Стронций и барий

Элементы достаточно распространены в природе и, так же, как щелочноземельный металл магний, входят в состав минералов. Назовем их: это барит, целестин, стронцианит. Барий имеет вид пластичного металла серебристо-белого цвета. Как и кальций, представлен несколькими изотопами. На воздухе активно взаимодействует с его компонентам - кислородом и азотом, образуя оксид и нитрид бария. По этой причине металл хранят под слоем парафина или минерального масла, избегая его контакта с воздухом. Оба металла при нагревании до 500°C образуют пероксиды.

Из них практическое применение имеет перекись бария, используемая в качестве отбеливателя тканей. Химические свойства щелочноземельных металлов - бария и стронция, похожи на свойства кальция. Однако их взаимодействие с водой протекает значительно активнее, а образовавшиеся основания являются более сильными, чем гидроксид кальция. Барий применяют в качестве добавки к жидкометаллическим теплоносителям, уменьшающей коррозию, в оптике, при изготовлении вакуумных электронных приборов. Стронций востребован в производстве фотоэлементов и люминофоров.

Качественные реакции с использованием ионов щелочноземельных металлов

Соединения бария и стронция - это примеры щелочноземельных металлов, широко используемых в пиротехнике по причине яркого окрашивания пламени их ионами. Так, сульфат или карбонат стронция дает карминово-красное свечение пламени, а соответствующие соединения бария - желто-зеленое. Для обнаружения ионов кальция в лаборатории на пламя горелки насыпают несколько крупинок хлорида кальция, пламя окрашивается в кирпично-красный цвет.

Раствор хлорида бария применяют в аналитической химии для выявления в растворе ионов кислотного остатка сульфатной кислоты. Если при сливании растворов образуется белый осадок сульфата бария - значит, в нем находились частицы SO 4 2- .

В нашей статье мы изучили свойства щелочноземельных металлов и привели примеры их применения в различных отраслях промышленности.

К понятию щелочноземельных металлов относится часть элементов II группы системы Менделеева: бериллий, магний, кальций, стронций, барий, радий. Четыре последних металла имеют наиболее ярко выраженные признаки щелочноземельной классификации, поэтому в некоторых источниках бериллий и магний не включают в список, ограничиваясь четырьмя элементами.

Свое название металла получили благодаря тому, что при взаимодействии их оксидов с водой образуется щелочная среда. Физические свойства щелочноземельных металлов: все элементы имеют серый металлический цвет, при нормальных условиях имеют твердую структуру, с ростом порядкового номера увеличивается их плотность, имеют очень высокую температуру плавления. В отличие от щелочных металлов, элементы данной группы не режутся ножом (за исключением стронция). Химические свойства щелочноземельных металлов: имеют два валентных электрона, активность растет с повышением порядкового номера, в реакциях выступают в качестве восстановителя.

Характеристика щелочноземельных металлов свидетельствует об их высокой активности. В особенности это относится к элементам с большим порядковым номером. Например, бериллий в нормальных условиях не ступает во взаимодействие с кислородом и галогенами. Для запуска механизма реагирования его необходимо нагреть до температуры свыше 600 градусов по Цельсию. Магний в нормальных условиях имеет на поверхности оксидную пленку и также не реагирует с кислородом. Кальций окисляется, но достаточно медленно. А вот стронций, барий и радий окисляются практически мгновенно, поэтому их хранят в безкислородной среде под керосиновым слоем.

Все оксиды усиливают основные свойства с ростом порядкового номера металла. Гидроксид бериллия представляет собой амфотерное соединение, которое не реагирует с водой, но хорошо растворяется в кислотах. Гидроксид магния является слабой щелочью, нерастворимой в воде, но реагирующей с сильными кислотами. Гидроксид кальция - сильное, малорастворимое в воде основание, реагирующее с кислотами. Гидроксиды бария и стронция относятся к сильным основаниям, хорошо растворимым в воде. А гидроксид радия - это одна из сильнейших щелочей, которая хорошо реагирует с водой и практически всеми видами кислот.

Способы получения

Получают гидроксиды щелочноземельных металлов путем воздействия воды на чистый элемент. Реакция протекает при комнатных условиях (кроме бериллия, для которого требуется повышение температуры) с выделением водорода. При нагревании все щелочноземельные металлы реагируют с галогенами. Полученные соединения используются в производстве большого ассортимента продукции от химических удобрений до сверхточных деталей микропроцессора. Соединения щелочноземельных металлов проявляют такую же высокую активность, как и чистые элементы, поэтому их используют во многих химических реакциях.

Чаще всего это происходит при реакциях обмена, когда необходимо вытеснить из вещества менее активный металл. В окислительно-восстановительных реакциях принимают участие в качестве сильного восстановителя. Двухвалентные катионы кальция и магния придает воде так называемую жесткость. Преодоление этого явления происходит путем осаждения ионов при помощи физического воздействия или добавления в воду специальных смягчающих веществ. Соли щелочноземельных металлов образуются путем растворения элементов в кислоте либо в результате реакций обмена. Полученные соединения имеют прочную ковалентную связь, поэтому обладают невысокой электропроводностью.

В природе щелочноземельные металлы не могут находиться в чистом виде, так как быстро вступают во взаимодействие с окружающей средой, образую химические соединения. Они входят в состав минералов и горных пород, содержащихся в толще земной коры. Наиболее распространен кальций, немного уступает ему магний, довольно часто встречаются барий и стронций. Бериллий относится к редким металлам, а радий - к очень редким. За все время, которое прошло с момента открытия радия, во всем мире было добыто всего полтора килограмма чистого металла. Как и большинство радиоактивных элементов, радий имеет изотопы, коих у него насчитывается четыре штуки.

Получают щелочноземельные металлы путем разложения сложных веществ и выделения из них чистого вещества. Бериллий добывают путем восстановления его из фторида при воздействии высокой температуры. Барий восстанавливает из его оксида. Кальций, магний и стронций получают путем электролиза их хлоридного расплава. Сложнее всего синтезировать чистый радий. Его добывают путем воздействия на урановую руду. По подсчетам ученых в среднем на одну тонну руды приходится 3 грамма чистого радия, хотя встречаются и богатые месторождения, в которых содержится целых 25 грамм на тонну. Для выделения металла используются методы осаждения, дробной кристаллизации и ионного обмена.

Применение щелочноземельных металлов

Спектр применения щелочноземельных металлов очень обширен и охватывает многие отрасли. Бериллий в большинстве случаев используется в качестве легирующей добавки в различные сплавы. Он повышает твердость и прочность материалов, хорошо защищает поверхность от воздействия коррозии. Также благодаря слабому поглощению радиоактивного излучения бериллий используется при изготовлении рентгеновских аппаратов и в ядерной энергетике.

Магний используют как один из восстановителей при получении титана. Его сплавы отличаются высокой прочностью и легкостью, поэтому используются при производстве самолетов, автомобилей, ракет. Оксид магния горит ярким ослепительным пламенем, что нашло отражение в военном деле, где он используется для изготовления зажигательных и трассирующих снарядов, сигнальных ракет и светошумовых гранат. Является одним из важнейших элементов для регуляции нормального процесса жизнедеятельности организма, поэтому входит в состав некоторых лекарств.

Кальций в чистом виде практически не применяют. Он нужен для восстановления других металлов из их соединений, а также в производстве препаратов для укрепления костной ткани. Стронций используют для восстановления других металлов и в качестве основного компонента для производства сверхпроводящих материалов. Барий добавляют во многие сплавы, которые предназначены для работы в агрессивной среде, так как он обладает отличными защитными свойствами. Радий используется в медицине для кратковременного облучения кожи при лечении злокачественных образований.

Из всей периодической системы большая часть элементов представляет группу металлов. амфотерные, переходные, радиоактивные - их очень много. Все металлы играют огромную роль не только в природе и биологической жизни человека, но и в различных отраслях промышленности. Не зря ведь XX век был назван "железным".

Металлы: общая характеристика

Все металлы объединяются общими химическими и физическими свойствами, по которым их легко отличить от неметаллических веществ. Так, например, строение кристаллической решетки позволяет им быть:

  • проводниками электрического тока;
  • хорошими теплопроводниками;
  • ковкими и пластичными;
  • прочными и блестящими.

Конечно, среди них есть и различия. Одни металлы блестят серебристым цветом, другие - более матовым белым, третьи - вообще красным и желтым. Также отличия есть и в показателях тепло- и электропроводности. Однако все равно эти параметры - общие для всех металлов, в то время как у неметаллов больше различий, нежели схожести.

По химической природе все металлы - восстановители. В зависимости от условий реакции и конкретных веществ могут выступать и в роли окислителей, однако редко. Способны образовывать многочисленные вещества. Химические соединения металлов встречаются в природе в огромном количестве в составе руды или полезных ископаемых, минералов и прочих пород. Степень всегда положительная, может быть постоянной (алюминий, натрий, кальций) или переменной (хром, железо, медь, марганец).

Многие из них получили широкое распространение в качестве строительных материалов, используются в самых разных отраслях науки и техники.

Химические соединения металлов

Среди таковых следует назвать несколько основных классов веществ, которые являются продуктами взаимодействия металлов с другими элементами и веществами.

  1. Оксиды, гидриды, нитриды, силициды, фосфиды, озониды, карбиды, сульфиды и прочие - бинарные соединения с неметаллами, чаще всего относятся к классу солей (кроме оксидов).
  2. Гидроксиды - общая формула Ме +х (ОН) х.
  3. Соли. Соединения металлов с кислотными остатками. Могут быть разными:
  • средние;
  • кислые;
  • двойные;
  • основные;
  • комплексные.

4. Соединения металлов с органическими веществами - металлорганические структуры.

5. Соединения металлов друг с другом - сплавы, которые получаются разными способами.

Варианты соединения металлов

Вещества, в которых одновременно могут находиться два разных металла и более, подразделяются на:

Способы соединения металлов между собой также варьируются. Например, для получения сплавов используют метод расплавления, смешения и затвердевания полученного продукта.

Интерметаллиды образуются в результате прямых химических реакций между металлами, нередко происходящих со взрывом (например, цинк и никель). Для таких процессов нужны особые условия: температура очень высокая, давление, вакуумность, отсутствие кислорода и прочие.

Сода, соль, каустик - все это соединения щелочных металлов в природе. Они существуют в чистом виде, формируя залежи, либо входят в состав продуктов сгорания тех или иных веществ. Иногда их получают лабораторным способом. Но всегда эти вещества важны и ценны, так как окружают человека и формируют его быт.

Соединения щелочных металлов и их применение не ограничиваются только натрием. Также распространены и популярны в отраслях хозяйства такие соли, как:

  • хлорид калия;
  • (нитрат калия);
  • карбонат калия;
  • сульфат.

Все они являются ценными минеральными удобрениями, используемыми в сельском хозяйстве.

Щелочноземельные металлы - соединения и их применение

К данной категории относятся элементы второй группы главной подгруппы системы химических элементов. Их постоянная степень окисления +2. Это активные восстановители, легко вступающие в химические реакции с большинством соединений и простых веществ. Проявляют все типичные свойства металлов: блеск, ковкость, тепло и электропроводность.

Самыми важными и распространенными из них являются магний и кальций. Бериллий проявляет амфотерность, барий и радий относятся к редким элементам. Все они способны формировать следующие типы соединений:

  • интерметаллические;
  • оксиды;
  • гидриды;
  • бинарные соли (соединения с неметаллами);
  • гидроксиды;
  • соли (двойные, комплексные, кислые, основные, средние).

Рассмотрим самые важные соединения с практической точки зрения и их области применения.

Соли магния и кальция

Такие соединения щелочноземельных металлов, как соли, имеют важное значение для живых организмов. Ведь именно соли кальция являются источником этого элемента в организме. А без него невозможно нормальное формирование скелета, зубов, рогов у животных, копыт, волос и шерстного покрова и так далее.

Так, самой распространенной солью щелочноземельного металла кальция является карбонат. Его другие названия:

  • мрамор;
  • известняк;
  • доломит.

Используется не только как поставщик ионов кальция в живой организм, но и как стройматериал, сырье для химических производств, в косметической промышленности, стекольной и так далее.

Такие соединения щелочноземельных металлов, как сульфаты, тоже имеют важное значение. Например, сульфат бария (медицинское название "баритовая каша") используется в рентгенодиагностике. Сульфат кальция в виде кристаллогидрата - это гипс, который содержится в природе. Он используется в медицине, строительстве, штамповке слепков.

Фосфоры из щелочноземельных металлов

Эти вещества известны еще со Средних веков. Раньше их называли люминофорами. Это название встречается и сейчас. По своей природе данные соединения - это сульфиды магния, стронция, бария, кальция.

При определенной обработке они способны проявлять фосфоресцирующие свойства, причем свечение очень красивое, от красного до ярко-фиолетового. Это применяется при изготовлении дорожных знаков, спецодежды и прочих вещей.

Комплексные соединения

Вещества, которые включают в себя два и более разных элементов металлической природы, - комплексные соединения металлов. Чаще всего они представляют собой жидкости, обладающие красивыми и разноцветными окрасками. Используются в аналитической химии для качественного определения ионов.

Такие вещества способны образовывать не только щелочные и щелочноземельные металлы, но и все остальные. Бывают гидроксокомплексы, аквакомплексы и другие.