Все о тюнинге авто

Как определить полярность соединения химия. Как определить полярность связи? Прямая и обратная полярность. Чем полярность молекулы отличается от полярности связи

Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.

Электроотрицательность (э.о.)- это способность атома смещать к себе электронные пары.
Мерой э.о. является энергия равняя арифметически ½ сумме энергии ионизации I и энергии сходства к электронц Е
Э.О. = ½ (I+E)

Относительная электроотрицательность. (ОЭО)

Фтору как самому сильному э.о элементу присваивается значение 4.00 относительно которого рассматриваются остальные элементы.

Изменения в периодах и группах Периодической системы.

Внутри периодов с увеличением заряда ядра слева направо увеличивается электроотрицательность.

Наименьшее значение наблюдается у щелочных и щелочноземельных металлов.

Наибольшее - у галогенов.

Чем выше электроотрицательность, тем сильнее у элементов выражены неметаллические свойства.

Электроотрицательность (χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A-B (A, B - символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A-A и B-B.

Самое выское значение э.о. у фтора,а самое низкое –цезий.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA - соответственно энергия ионизации атома и его сродство к электрону.
Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы. Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.

2)Полярность химической связи, полярность молекул и ионов.

То,что есть в конспекте и в учебнике-Полярность связана с дипольным моментом.Проявляется в результате смещения общей электронной пары к одному из атомов.Полярность так же зависит от разности электроотрицательности связываемых атомов.Чем выше значение э.о. двух атомов,тем более полярной является хим.связь между ними.В зависимости от того,как происходит перераспределение электронной плотности при образовании химической связи,различают несколько ее типов.Предельный случай поляризации хим.связи – полный переход от одного атома к другому.

При этом образуется два иона, между которыми возникает ионная связь.Для того чтобы два атома смогли создать ионную связь,необходимо, чтобы их э.о. очень сильно различались.Если э.о. равны,то образуется неполярная ковалентная связь.Чаще всего встречается полярная ковалентная связь- она образуется между любыми атомами,имеющими разное значение э.о.

Количественной оценкой полярности связи могут служить эффективные заряды атомов.эффективный заряд атома характерезует разность между числом электоронов,принадлежащих данному атому в химическом соединении, и числом электронов свободного атома.атом более электроотрицательного элемента притягивает электроны сильнее,поэтому электроны оказываются ближе к нему,и он получает некоторый отрицательный заряд,который называют эффективным,а у его партнера появляется такой же положительный эффективный заряд.Если электроны,образующие связь между атомами, принадлежат им в равной степени,эффективные заряяды равны нулю.

Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента M=q*r где q-заряд полюса диполя,равный для двухатомной молекулы эффективному заряду, r-межъядерное расстояние.Диполный момент связи является векторной величиной. Он направлен от положительно зарядной части молекулы к ее отрицательной части.Эффектичный заряд на атоме элемента не совпадает со степенью окисления.

Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

Ионы, подобно электрическому полю, оказывают поляризующее действие друг на друга. При встрече двух ионов происходит их взаимная поляризация, т.е. смещение электронов внешних слоев относительно ядер. Взаимная поляризация ионов зависит от зарядов ядра и иона, радиуса иона и других факторов.

Внутри групп э.о. уменьшается.

Металлические свойства элементов возрастают.

Металлические элементы на внешнем энергетическом уровне содержат 1,2,3 электрона и характеризуются низким значением ионизационных потенциалов и э.о. потому что металлы проявляют выраженную тенденцию к отдаче электронов.
Неметаллические элементы отличаются более высоким значением энергии ионизации.
По мере заполнения наружной оболочки у неметаллов внутри периодов уменьшается радиус атомов. На внешней оболочке число электронов равно 4,5,6,7,8.

Полярность химической связи. Полярность молекул и ионов.

Полярность химической с вязи – определяется смещением связей электронной пары к одному из атомов.

Химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа, за счет образования ионов или образования общих электронных пар.
Химическая связь характеризуется энергией и длиной.
Мерой прочности связи служит энергия, затрачиваемая на разрушение связи.
Например. Н – Н = 435 кДжмоль-1

Электроотрицательность атомово элементов
Электроотрицательность - химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Относительная электроотрицательность

Первой и наиболее известной шкалой относительной электроотрицательности является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0.

Элементы VIII группы периодической системы (благородные газы) имеют нулевую электроотрицательность;
Условной границей между металлами и неметаллами считается значение относительной электроотрицательности равное 2.

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь.
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.

Полярность химической связи, полярность молекул и ионов
Полярность химических связей, характеристика химической связи, показывающая перераспределение электронной плотности в пространстве вблизи ядер по сравнению с исходным распределением этой плотности в нейтральных атомах, образующих данную связь.

Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах - в той или иной степени полярны. Обычно ковалентные связи слабо полярны, ионные связи сильно полярны.

Например:
ковалентная неполярная: Cl2, O2, N2, H2,Br2

ковалентная полярная: H2O, SO2, HCl, NH3 и т.д.

Полярность химических связей - характеристика химической связи, показывающая изменение распределения электронной плотности в пространстве вокруг ядер в сравнении с распределением электронной плотности в образующих данную связь нейтральных атомах. В качестве количественной меры полярности связи используются так называемые эффективные заряды на атомах. Эффективный заряд определяется как разность между зарядом электронов, находящимся в некоторой области пространства вблизи ядра, и зарядом ядра. Однако эта мера имеет лишь условный и приблизительный смысл, поскольку невозможно однозначно выделить в молекуле область, относящуюся исключительно к отдельному атому, а при нескольких связях - к конкретной связи. Наличие эффективного заряда может быть указано символами зарядов у атомов (например, Н +δ - Cl −δ , где δ - некоторая доля элементарного заряда). Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах - в той или иной степени полярны. Ковалентные связи обычно слабо полярны. Ионные связи - сильно полярны. Полярность молекулы определяется разностью электроотрицательностей атомов, образующих двухцентровую связь, геометрией молекулы, а так же наличием неподеленных электронных пар, так как часть электронной плотности в молекуле может быть локализована не в направлении связей. Полярность связи выражается через ее ионную составляющую, то есть через смещение электронной пары к более электроотрицательному атому. Полярность связи может быть выражена через ее дипольный момент μ, равный произведению элементарного заряда на длину диполя μ = e ∙ l. Полярность молекулы выражается через ее дипольный момент, который равен векторной сумме всех дипольных моментов связей молекулы. Диполь – система из двух равных, но противоположных по знаку зарядов, находящихся на единичном расстоянии друг от друга. Дипольный момент измеряется в кулон-метрах (Кл∙м) или в дебаях (D); 1D = 0,333∙10 –29 Кл∙м.

12. Донорно-акцепторный механизм ков.Св.. Комплексные соединения.

Донорно-акцепторный механизм (иначе координационный механизм ) - способ образования ковалентной химической связи между двумя атомами или группой атомов, осуществляемый за счет неподеленной пары электронов атома-донора и свободной орбитали атома-акцептора. Если одна из двух молекул имеет атом со свободными орбиталями, а другая атом с прой неопределенных электронов, то мнежду ними возникает Д-А взаимодействие.

Комплексное соединение – сложные соединения, у которых имеются ковалентные связи, образованные по ДАМ. Рассмотрим пример SO4. Cu-комплексообразователь, 4-координационное число. ()- внутренняя сфера, -внешняя сфера, NH3-лиганды.

Координационное число для комплексного соединения имеет тот же смысл, что валентность в обычных соединениях. Принимает значения от 1-12 (кроме 10 и 11).

13. Межмолекулярное взаимодействие. Водородная связь.

Водородная связь - вид химической связи между электроотрицательным атомом и атомом водорода H , связанным ковалентно с другим электроотрицательным атомом (в составе той же молекулы или в другой молекуле). Обычно изображается точками или пунктиром на структурных схемах. Водородная связь по прочности превосходит вандерваальсово взаимодействие, и ее энергия составляет 8-40 кДж/моль. Однако она обычно на порядок слабее ковалентной связи. Водородная связь характерна для соединений водорода с наиболее электроотрицательными элементами: фтора, кислорода, азота, хлора и серы. Водородная связь весьма распространена и играет важную роль при ассоциации молекул, в процессах кристаллизации, растворения, образования кристаллогидратов, электролитической диссоциации и других важных физико-химических процессах. Молекула воды образует четыре водородные связи, чем объясняются особенности строения воды и льда, а также многие аномальные свойства воды: 1) макс. плотность при температуре +42) вода обладает наибольшей теплоемкостью из известных жидкостей. При нагреве воды значительная часть энергии затрачивается на разрыв связей, отсюда и повышенная теплоемкость. Межмолекулярное взаимодействие - взаимодействие молекул между собой, не приводящее к разрыву или образованию новых химических связей. В их основе, как и в основе химической связи, лежат электрические взаимодействия. Различают ориентационное, индукционное и дисперсионное взаимодействия. Ориентационные силы , диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. В результате беспорядочного теплового движения молекул при их сближении друг с другом одноименно заряженные концы диполей взаимно отталкиваются, а противоположно заряженные притягиваются. Чем более полярны молекулы, тем сильнее они притягиваются и тем самым больше ориентационное взаимодействие.Энергиятакого взаимодействия обратно пропорциональна кубу расстояния между диполями.Дисперсионное притяжение (лондоновские силы). Взаимодействие между мгновенным и наведенным диполем. При сближении молекул ориентация микродиполей перестает быть независимой и их появление и исчезновение в разных молекулах происходит в такт друг другу. Синхронное появление и исчезновение микродиполей разных молекул сопровождается их притяжением. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями. Индукционное притяжение. Взаимодействие между постоянным диполем и наведенным (индуцированным). Встречаются полярная и неполярная молекулы. Под действием полярной молекулы неполярная молекула деформируется и в ней возникает (индуцируется) диполь. Индуцированный диполь притягивается к постоянному диполю полярной молекулы и в свою очередь усиливает электрический момент диполя полярной молекулы. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

14. Система. Фаза. Компонент. Параметры. Функции состояния: внутренняя энергия и энтальпия. Стандартные условия.

Система - это тело или группа тел, находящиеся во взаимодействии, которые мысленно выделены из окружающей среды. Бывают гомогенными (однородные) и гетерогенными (неоднородные).Изолированная система не имеет обмена веществ и энергий с окружающей средой. Закрытая – не имеет только массообмена (необратимый перенос массы компонента смеси в пределах одной или неск. фаз). Открытая – имеет и энерго- и массообмен.Фаза - совокупность всех гомогенных частей системы, одинаковых по составу и всем физ. и хим. свойствам, не зависящим от количества вещества. Фазы отделены друг от друга поверхностями раздела, на которых все свойства фазы резко скачком меняются. Компоненты – составные части системы, химически индивидуальные вещества, составляющие данную систему и способные к самостоятельному существованию, будучи изолированными от других частей системы.Состояние системы определяется набором переменных величин - параметров . Различают параметры интенсивные и экстенсивные. Интенсивные - не зависят от массы или числа частиц в-ва. (P,T), а экстенсивные - зависят (V, E).Функции состояния - это термодинамические функции, значения которых зависят только от состояния системы и не зависят от пути, по которому система пришла в данное состояние. Изменение функции состояния Наиболее важными функциями являются внутренняя энергия системы U и энтальпия H (теплосодержание) Внутр. энергия – общий запас энергии: энергия поступательного и вращательного движения, энергия колебаний, внутриядерная энергия, за исключением кинетической энергии системы в целом и потенциальной энергии положения системы. Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту. Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру.стандартное давление для газов, жидкостей, и твёрдых тел, равное 10 5 Па(750мм рт. ст.);стандартная температура для газов, равная 273,15 К(0° С);стандартная молярность для растворов, равная 1 моль л −1 .При этих условиях константа диссоциациидистиллированнойводысоставляет 1,0×10 −14 .

15. Первое начало термодинамики. Закон Гесса как следствие первого начала термодинамики. Термохимические расчеты.

Существует множество формулировок первого закона: В изолированной системе общий запас энергии сохраняется постоянным. Поскольку работа является одной из форм перехода энергии, то, следовательно, невозможно создание вечного двигателя первого рода (машины, совершающей работу без затраты энергии). Математическая формулировка: При протеканииизобарического процесса:При протекании изохорического процесса:При протекании изотермического процесса:При протекании кругового процесса:

Термохимия – область физ. химии, занимающаяся изучением энергет. эффектов реакций. Если в уравнении указан ее энергетический эффект – это термохимическое ур-е.V=const, p=const, основному закону термохимии Этот закон – прямое следствие первого закона термодинамики.С помощью закона Гесса можно вычислять теплоты различных реакций, не проводя самих реакций.

Например:

Вывод: теплота испарения одного моля воды равна 44 Дж.

16. Стандартная энтальпия образования. Следствия из закона Гесса.

Под стандартной теплотой (энтальпией) образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях. Стандартная энтальпия образования обозначается ΔH f O .

Русский ученый Гесс (1840) дал формулировку основному закону термохимии : тепловой эффект реакции, протекающей при постоянном объеме или при постоянном давлении, не зависит от пути реакции (от ее промежуточных стадий), а определяется только природой и состоянием исходных веществ и продуктов реакции. Следствия из закона Гесса:

1. Тепловой эффект реакции равен разности между суммой теплот горения исходных веществ и суммой теплот горения продуктов реакции. Теплота горения – тепловой эффект реакции окисления данного соединения кислородом с образованием высших оксидов. Теплота образования – тепловой эффект реакции образования данного соединения из простых веществ, отвечающих наиболее устойчивому состоянию элементов при данных температуре и давлении.

2. Тепловой эффект реакции равен разности между теплотами образования всех веществ, указанных в правой части уравнения, и теплотами образования веществ в левой части уравнения, взятых с коэффициентами перед формулами этих веществ в уравнении самой реакции. В настоящее время известны теплоты образования свыше 6000 веществ. Стандартные теплоты образования – величины теплот образования к температуре 298К и давлению 1атм.

17. Зависимость теплового эффекта химической реакции от температуры (закон Кирхгофа). Продифференцируем уравнения ипо Т, причем в первом случае возьмем постоянный V, а во втором – Р.

Температурный коэффициент теплового эффекта процесса равен изменению теплоемкости системы, происходящему в результате процесса (правило Кирхгоффа). Интегрируя полученные выше дифф уравнения, получаем:

В небольшом диапазоне температур можно ограничиться первым членом степенного ряда для С, и тогда она будет постоянной.

18. Второе начало термодинамики. Понятие об энтропии. Термодинамическая вероятность. Приведённое тепло. Неравенство и тождество Клаузиуса.

Невозможен самопроизвольный переход тепла от менее нагретого тела более нагретому. Невозможно создание вечного двигателя 2го рода(машины, которая периодически превращает тепло среды при пост. температуре в работу. Термодинамический КПД: Для изолированных систем критерием, позволяющим судить о направлении процессов и об условиях равновесия, является функция-S -энтропия . Процессы протекают в сторону увеличения энтропии. При равновесии энтропия достигает максимума. Обратное протекание процессов не может быть самопроизвольным – требуется затрата работы извне. Физ. смысл функции состояния энтропии легче всего проиллюстрировать на примере кипения жидкости. При нагреве: Т и U увеличиваются до тех пор, пока жидкость не закипит. При этом поглощается теплота испарения, затрачиваемая на увеличение беспорядка в системе. Таким образом, энтропия – мера упорядоченности состояния системы. -2е начало термодинамики для обратимых процессов. В изолированной системе процессы самопроизвольные, протекают в сторону увеличения энтропииВнеизолированных –возможно Термодинамическая вероятность (или статический вес) - число способов, которыми может быть реализовано состояние физической системы.Неравенство Клаузиуса (1854): Количество теплоты, полученное системой при любом круговом процессе, делённое на абсолютную температуру, при которой оно было получено (приведённое количество теплоты ), неположительно.

19.Тепловая теорема Нернста. Постулат Планка. Расчёт абсолютного значения энтропии. Понятие вырождения идеального газа. Теорема Нернста утверждает, что изменение энтропии в обратимой хим. р-ции между в-вами в конденсир. состоянии, стремится к нулю при T0:Основываясь на этом, Планк в 1911 году постулировал: “При абсолютном нуле температуры энтропия не только имеет наименьшее значение, но просто равна нулю”.Постулат Планка формулируется следующим образом: «Энтропия правильно сформированного кристалла чистого вещества при абсолютном нуле температуры равна нулю» Абсолютное значение энтропии позволяет установить третье начало термодинамики, или Нернста теорему: при стремлении абсолютной температуры к нулю разность DS для любого вещества стремится к нулю независимо от внешних параметров. Поэтому: энтропию всех веществ при абсолютном нуле температуры можно принять равной нулю (эту формулировку теоремы Нернста предложил в 1911 М. Планк). Основываясь на ней, за начальную точку отсчёта энтропии принимают S o = 0 при Т = 0.Вырожденный газ - газ, свойства которого существенно отличаются от свойств классического идеального газа вследствие квантовомеханического влияния одинаковых частиц друг на друга. Это взаимное влияние частиц обусловлено не силовыми взаимодействиями, отсутствующими у идеального газа, а тождественностью (неразличимостью) одинаковых частиц в квантовой механике. В результате такого влияния заполнение частицами возможных уровней энергии даже в идеальном газе зависит от наличия на данном уровне других частиц. Поэтому теплоёмкость и давление такого газа иначе зависят от температуры, чем у идеального классического газа; по-другому выражается Энтропия,Свободная энергияи т. д. Вырождение газа наступает при понижении его температуры до некоторого значения, называемого температурой вырождения. Полное вырождение соответствует абсолютному нулю температуры. Влияние тождественности частиц сказывается тем существеннее, чем меньше среднее расстояние между частицамиr по сравнению с длиной Волны де Бройлячастиц λ =h/mv (m - масса частицы, v - её скорость, h - Планка постоянная)

20.Объединенная формула первого и второго начала термодинамики. Свободная энергия Гиббса и Гельмгольца. Условия самопроизвольного протекания химических реакций. Первый закон. Теплота, подведенная к системе, расходуется на приращение внутренней энергии системы и на работу системы над окружающей средой. Второй закон. (Несколько формулировок): в изолированных системах самопроизвольно идут процессы, которые сопровождаются возрастанием энтропии: Энтропия – термодинамическая функция, характеризующая меру неупорядоченности состояния системы. Она используется для суждения о направлении самопроизвольно протекающих процессах. Обобщенный закон. Для каждой изолированной термодинамической системы существует состояние термодинамического равновесия, которого она при фиксированных внешних условиях с течением времени самопроизвольно достигает. TdS>dU+pd Энергия Гельмгольца. Максимальная работа, которую может совершить система при равновесном проведении процесса, равна изменению энергии Гельмгольца реакции Энергия Гельмгольца равнаназываютсвязанной энергией . Она характеризует предел самопроизвольного течения реакции, которое возможно при Энергия Гиббса. Энтальпийный и энтропийный факторы, характеризующие процессы, объединены функцией - энергия Гиббса.Поскольку энергию Гиббса можно превратить в работу, то ее называютсвободной энергией . Химическая реакция возможна, если энергия Гиббса уменьшается (<0).Энергия Гиббса образования вещества – изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых при 298 К.

В гомоядерных молекулах (Н 2 , F 2 и др.) электронная пара, образующая связь, в равной степени принадлежит каждому атому, поэтому центры положительного и отрицательного зарядов в молекуле совпадают. Такие молекулы неполярны.

Однако в гетероядерных молекулах вклад в связь волновых функций разных атомов неодинаков. Вблизи одного из атомов появляется избыточная электронная плотность, следовательно, избыточный отрицательный заряд, а вблизи другого - положительный. В этом случае говорят о смещении электронной пары от одного атома к другому, но понимать это надо не буквально, а лишь как увеличение вероятности нахождения электронной пары вблизи одного из ядер молекулы.

Для определения направления такого смещения и полуколичест- венной оценки его величины введено понятие электроотрицательности.

Имеется несколько шкал электроотрицательности. Однако элементы располагаются в ряду по электроотрицательности в одинаковом порядке, поэтому отличия несущественны, а шкалы электроотрицательности вполне сопоставимы.

Электроотрицательность по Р. Малликену есть полусумма энергий ионизации и сродства к электрону (см. разд. 2.10.3):

Валентная электронная пара смещается к более электроотрицательному атому.

Удобнее пользоваться не абсолютными значениями электроотрицательности, а относительными. За единицу принята электроотрицательность лития 3 Li. Относительная электроотрицательность какого-либо элемента А равна:

Наименьшую электроотрицательность имеют тяжелые щелочные металы (X Fr = 0,7). Самый электроотрицательный элемент - фтор (X F = 4,0). По периодам наблюдается общая тенденция роста электроотрицательности, а по подгруппам - ее уменьшение (табл. 3.4).

При практическом использовании данных этой таблицы (как и данных других шкал электроотрицательности) следует иметь в виду, что в молекулах, состоящих из трех и более атомов, значение электроотрицательности под влиянием соседних атомов может заметно изменяться. Строго говоря, элементу вообще нельзя приписать постоянную электроотрицательность. Она зависит от валентного состояния элемента, типа соединения и пр. Тем не менее это понятие полезно для качественного объяснения свойств химической связи и соединений.

Таблица 3.4

Электроотрицательность s- и p-элементов по Полингу

Период

Группа

Полярность связи определяется смещением валентной электронной пары в двухатомных молекулах и количественно характеризуется дипольным моментом, или электрическим моментом диполя , молекулы. Он равен произведению расстояния между ядрами г в молекуле и эффективного заряда 5, соответствующего этому расстоянию:

Поскольку г считают вектором, направленным от положительного к отрицательному заряду, дипольный момент также является вектором и имеет то же направление. Единицей измерения дипольного момента является дебай D (1D = 3,33 Ю -30 Кл м).

Дипольный момент сложной молекулы определяется как векторная сумма дипольных моментов всех связей. Поэтому, если молекула АВ я симметрична относительно линии каждой связи, суммарный дипольный момент такой молекулы, несмотря на поляр-

ность связей А-В, равен нулю: Д = ^ Д; = 0. Примерами могут слу-

жить рассмотренные ранее симметричные молекулы, связи в которых образованы гибридными орбиталями: BeF 2 , BF 3 , СН 4 , SF 6 и др.

Молекулы, связи в которых образованы негибридными орбиталями или гибридными орбиталями с участием неподеленных пар электронов, несимметричны относительно линий связей. Дипольные моменты подобных молекул не равны нулю. Примеры таких полярных молекул: H 2 S, NH 3 , Н 2 0 и др. На рис. 3.18 приведена графическая интерпретация суммирования векторов полярных связей в симметричной молекуле BeF 2 (fl) и несимметричной молекуле H 2 S (б).


Рис. 3.18. Дипольные моменты молекул BeF 2 (а) и H 2 S (б)

Как уже отмечалось, чем больше разность электроотрицательностей атомов, образующих связь, тем сильней смещается валентная электронная пара, тем более полярна связь и, следовательно, больше эффективный заряд б, что иллюстрирует табл. 3.5.

Таблица 3.5

Изменение характера связи в ряду соединений элементов II периода с фтором

В полярной связи можно условно выделить две составляющие: ионную, обусловленную электростатическим притяжением, и ковалентную, обусловленную перекрыванием орбиталей. По мере увеличения разности электроотрицательностей АХ валентная электронная пара все сильнее смещается к атому фтора, который приобретает все более отрицательный эффективный заряд. Увеличивается вклад в связь ионной составляющей, уменьшается доля ковалентной составляющей. Количественные изменения переходят в качественные: в молекуле UF электронная пара практически полностью принадлежит фтору, а его эффективный заряд приближается к единице, т.е. к заряду электрона. Можно считать, что образовались два иона: катион Li + и анион F~, а связь обусловлена только их электростатическим притяжением (ковалентной составляющей можно пренебречь). Такая связь называется ионной. Ее можно рассматривать как крайний случай ковалентной полярной связи.

Электростатическое поле не имеет преимущественных направлений. Поэтому ионной связи в отличие от ковалентной не свойственна направленность. Ион взаимодействует с любым количеством ионов противоположного заряда. Этим обусловлено еще одно отличительное свойство ионной связи - отсутствие насыщаемости.

Для ионных молекул можно рассчитать энергию связи. Если рассматривать ионы как недеформируемые шары с зарядами ±е, то сила притяжения между ними в зависимости от расстояния между центрами ионов г можно выразить уравнением Кулона:

Энергия притяжения определяется соотношением

При сближении появляется сила отталкивания, обусловленная взаимодействием электронных оболочек. Она обратно пропорциональна расстоянию в степени п:

где В - некоторая постоянная. Показатель степени п значительно больше единицы и для различных конфигураций ионов лежит в пределах от 5 до 12. Учитывая, что сила есть производная энергии по расстоянию, из уравнения (3.6) получим:

С изменением г изменяются F np и F qtt . На некотором расстоянии г 0 эти силы уравниваются, что соответствует минимуму результирующей энергии взаимодействия U Q . После преобразований можно получить

Это уравнение известно как уравнение Борна.

Минимуму на кривой зависимости U=f(r) соответствуют равновесное расстояние г 0 и энергия U Q . Это энергия связи между ионами. Даже если п неизвестно, то можно оценить величину энергии связи, приняв 1 /п равным нулю:


Ошибка при этом не превысит 20%.

Для ионов с зарядами z l и z 2 уравнения (3.7) и (3.8) принимают вид:


Поскольку в молекулах подобного типа существование связи, приближающейся к чисто ионной, проблематично, последние уравнения следует считать весьма грубым приближением.

В то же время к проблемам полярности и ионности связи можно подойти с противоположной позиции - с точки зрения поляризации ионов. Предполагается, что происходит полная передача электронов, а молекула состоит из обособленных ионов. Затем происходит смещение электронных облаков под действием электрического поля, создаваемого ионами, - поляризация ионов.

Поляризация - процесс двуединый, в котором сочетается поляризующее действие ионов с их поляризуемостью. Поляризуемость - это способность электронного облака иона, молекулы или атома к деформации под действием электростатического поля другого иона. Напряженность этого поля определяет поляризующее действие иона. Из уравнения (3.10) следует, что поляризующее действие иона тем больше, чем больше его заряд и меньше радиус. Радиусы катионов, как правило, значительно меньше, чем радиусы анионов, поэтому практически приходится чаще сталкиваться с поляризацией анионов под действием катионов, а не наоборот. Поляризуемость ионов также зависит от их заряда и радиуса. Ионы большого размера и заряда легче поляризуются. Поляризующее действие иона сводится к оттягиванию на себя электронного облака иона противоположного заряда. В результате ионность связи уменьшается, т.е. связь становится полярной ковалентной. Таким образом, поляризация ионов уменьшает степень ионности связи и по своему эффекту противоположна поляризации связи.

Поляризация ионов в молекуле, т.е. увеличение в ней доли ковалентной связи, увеличивает прочность ее распада на ионы. В ряду соединений данного катиона с анионами одинакового типа степень диссоциации в растворах уменьшается с увеличением поляризуемости анионов. Например, в ряду галогенидов свинца РЬС1 2 - РЬВг 2 - РЫ 2 растет радиус галогенид-анионов, усиливается их поляризуемость, ослабляется распад на ионы, что выражается в уменьшении растворимости.

При сравнении свойств солей с одинаковым анионом и достаточно большими катионами следует учитывать поляризацию катионов. Например, радиус иона Hg 2+ больше, чем радиус иона Са 2+ , поэтому Hg 2+ поляризуется сильнее, чем Са 2+ . В результате этого СаС1 2 является сильным электролитом, т.е. диссоциирует в растворе нацело, а HgCl 2 - слабым электролитом, т.е. практически не диссоциирует в растворах.

Поляризация ионов в молекуле уменьшает ее прочность при распаде на атомы или молекулы. Например, в ряду СаС1 2 - СаВг 2 - Са1 2 увеличивается радиус галогенид-ионов, усиливается их поляризация ионом Са 2+ , поэтому уменьшается температура термической диссоциации на кальций и галоген: СаНа1 2 = Са + На1 2 .

Если ион поляризуется легко, то на его возбуждение требуется небольшая энергия, что соответствует поглощению квантов видимого света. Это является причиной окраски растворов таких соединений. Усиление поляризуемости приводит к усилению окраски, например, в ряду NiCl 2 - NiBr 2 - Nil 2 (усиление поляризуемости аниона) или в ряду КС1 - СиС1 2 (усиление поляризуемости катиона).

Граница между ковалентной полярной и ионной связью весьма условна. Для молекул в газообразном состоянии считают, что при разности электроотрицательностей АХ > 2,5 связь ионная. В растворах полярных растворителей, а также в кристаллическом состоянии сильное влияние оказывают, соответственно, молекулы растворителя и соседние частицы в узлах кристаллической решетки. Поэтому ионный характер связи проявляется при значительно меньшей разности злектроотрицательностей. Практически можно считать, что связь между типичными металлами и неметаллами в растворах и кристаллах ионная.

Молекула полярна, если центр отрицательного заряда не совпадает с центром положительного. Такая молекула является диполем: два равных по величине и противоположных по знаку заряда разделены в пространстве.

Диполь обычно обозначают символом где стрелка направлена от положительного конца диполя к отрицательному. Молекула обладает дипольным моментом, который равен величине заряда умноженной на расстояние между центрами зарядов:

Дипольные моменты молекул можно измерить; некоторые найденные величины приведены в табл. 1.2. Величины дипольных моментов служат мерой относительной полярности различных молекул.

Таблица 1.2 (см. скан) Дипольиые моменты

Несомненно, что молекулы полярны, если только связи в ней полярны. Мы будем рассматривать полярность связи, потому что полярность молекулы можно представить как сумму полярностей отдельных связей.

Такие молекулы, как имеют дипольный момент, равный нулю, т. е. они неполярны. Два одинаковых атома в любой из приведенных молекул имеют, конечно, одну и ту же электроотрицательность и в равной степени владеют электронами; заряд равен нулю и, следовательно, дипольный момент тоже равен нулю.

Молекула типа обладает большим дипольным моментом Хотя молекула фтористого водорода мала, электроотрицательный фтор сильно притягивает электроны; хотя расстояние мало, заряд велик, и, следовательно, дипольный момент тоже большой.

У метана и четыреххлористого углерода дипольные моменты равны нулю. Индивидуальные связи, по крайней мере в четыреххлористом углероде, полярны: однако вследствие симметричности тетраэдрического расположения они компенсируют друг друга (рис. 1.9). В хлористом метиле полярность связи углерод - хлор не компенсируется и дипольный момент хлористого метила равен Таким образом, полярность молекул зависит не только от полярности индивидуальных связей, но также и от их направления, т. е. от формы молекулы.

Дипольный момент аммиака равен Его можно рассматривать как суммарный дипольный момент (векторная сумма) трех моментов индивидуальных связей, имеющих направление, показанное на рисунке.

Рис. 1.9. Дипольные моменты некоторых молекул. Полярность связей и молекул.

Аналогично можно рассматривать дипольный момент воды, равный

Какой же дипольный момент следует ожидать для трехфтористого азота который, как и аммиак, имеет пирамидальную структуру? Фтор - наиболее электроотрицательный элемент, и он, конечно, сильно оттягивает электроны от азота; поэтому связи азот - фтор должны быть сильно полярными и их векторная сумма должна быть большой - значительно больше, чем для аммиака с его не очень полярными -связями.

Что же дает эксперимент? Дипольный момент трехфтористого азота равен только Он значительно меньше дипольного момента аммиака.

Как же объяснить этот факт? В приведенном выше рассмотрении не учитывалась неподеленная пара электронов. В (как и в эта пара занимает -орбиталь и ее вклад в дипольный момент должен иметь противоположное направление по сравнению с суммарным моментом связей азот - фтор (рис. 1.10); эти моменты противоположного знака, очевидно, имеют примерно одну и ту же величину, и в результате наблюдается небольшой дипольный момент, направление которого неизвестно. В аммиаке дипольный момент, вероятно, определяется в основном этой свободной электронной парой, причем он увеличен за счет суммы моментов связей. Аналогичным образом неподеленные пары электронов должны давать вклад в дипольные моменты воды и, конечно, любых других молекул, в которых они имеются.

На основании значений дипольных моментов можно получить ценную информацию о строении молекул. Например, можно исключить любую структуру четыреххлористого углерода, приводящую к полярной молекуле, только «а основании величины дипольного момента.

Рис. 1.10. Дипольные моменты некоторых молекул. Вклад неподеленной пары электронов. Дипольный момент обусловленный неподеленной парой электронов, имеет направление, противоположное направлению суммарного вектора моментов связей.

Таким образом, дипольный момент подтверждает тетраэдрическую структуру четыреххлористого углерода (хотя и не доказывает, поскольку возможны и другие структуры, которые также дадут неполярную молекулу).

Задача 1.4. Какие из двух указанных ниже возможных структур также должны были бы иметь дипольный момент, равный нулю? а) Углерод расположен в центре квадрата, по углам которого находятся атомы хлора, б) Углерод расположен в вершине четырехгранной пирамиды, а атомы хлора - в углах основания.

Задача 1.5. Хотя связи углерод - кислород и бор - фтор должны быть полярными, дипольный момент соединений равен нулю. Предложите расположение атомов для каждого соединения, обусловливающее нулевой дипольиый момент.

Для большинства соединений дипольный момент никогда не измерялся. Полярность этих соединений можно предсказать исходя из их строения. Полярность связей определяется по электроотрицательности атомов; если известны углы между связями, то можно определить полярность молекулы, учитывая также неспаренные пары электронов.


Следует отличать полярность молекулы от полярности связи. Для двухатомных молекул типа АВ эти понятия совпадают, как это уже показано на примере молекулы HCl. В таких молекулах чем больше разность электроотрицательностей элементов (∆ЭО), тем больше электрический момент диполя. Например, в ряду HF, HCl, HBr, HI он уменьшается в той же последовательности, как и относительная электроотрицательность.

Молекулы могут быть полярными и неполярными в зависимости от характера распределения электронной плотности молекулы. Полярность молекулы характеризуется значением электрического момента диполя μ мол , который равен векторной сумме электрических моментов диполей всех связей и несвязывающих электронных пар, расположенных на гибридных АО: → →

 м-лы = ( связи) i + ( несвяз.эл.пары) j .

Результат сложения зависит от полярности связей, геометрического строения молекулы, наличия неподеленных электронных пар. Большое влияние на полярность молекулы оказывает её симметрия.

Например, молекула СО 2 имеет симметричное линейное строение:

Поэтому, хотя связи С=О и имеют сильно полярный характер, вследствие взаимной компенсации их электрических моментов диполя молекула СО 2 в целом неполярна ( м-лы =  связи = 0). По этой же причине неполярны высокосимметричные тетраэдрические молекулы СН 4 , СF 4 , октаэдрическая молекула SF 6 и т. д.

В угловой молекуле Н 2 О полярные связи О–Н располагаются под углом 104,5º: → →

 Н2О =  O – H +  несвяз.эл.пары  0.

Поэтому их моменты взаимно не компенсируются и молекула оказывается полярной ().

Электрическим моментом диполя обладают также угловая молекула SO 2 , пирамидальные молекулы NH 3 , NF 3 и т. д. Отсутствие такого момента

свидетельствует о высокосимметричной структуре молекулы, наличие электрического момента диполя – о несимметричности структуры молекулы (табл. 3.2).

Таблица 3.2

Строение и ожидаемая полярность молекул

Пространственная конфигурация

Ожидаемая полярность

Линейная

Неполярная

Линейная

Полярная

Линейная

Неполярная

Полярная

Линейная

Полярная

Плоскотреугольная

Неполярная

Тригонально-пирамидальная

Полярная

Тетраэдрическая

Неполярная

На значение электрического момента диполя молекулы сильно влияют несвязывающие электронные пары, расположенные на гибридных орбиталях и имеющие собственный электрический момент диполя (направление вектора – от ядра, по оси расположения гибридной АО). Например, молекулыNH 3 и NF 3 имеют одинаковую тригонально-пирамидальную форму, полярность связей N–H и N–F также примерно одинакова. Однако электрический момент диполя NH 3 равен 0,49·10 -29 Кл·м, а NF 3 всего 0,07·10 -29 Кл·м. Это объясняется тем, что в NH 3 направление электрического момента диполя связывающей N–H и несвязывающей электронной пары совпадает и при векторном сложении обусловливает большой электрический момент диполя. Наоборот, в NF 3 моменты связей N–F и электронной пары направлены в противоположные стороны, поэтому при сложении они частично компенсируются (рис. 3.15).

Рис 3.15. Сложение электрических моментов диполя связывающих и несвязывающих электронных пар молекул NH 3 иNF 3

Неполярную молекулу можно сделать полярной. Для этого её надо поместить в электрическое поле с определенной разностью потенциалов. Под действием электрического поля «центры тяжести» положительных и отрицательных зарядов смещаются и возникает индуцированный или наведенный электрический момент диполя. При снятии поля молекула опять станет неполярной.

Под действием внешнего электрического поля полярная молекула поляризуется, т. е. в ней происходит перераспределение зарядов, и молекула приобретает новое значение электрического момента диполя, становится ещё более полярной. Это может происходить и под влиянием поля, создаваемого приблизившейся полярной молекулой. Способность молекул поляризоваться под действием внешнего электрического поля называют поляризуемостью.

Полярностью и поляризуемостью молекул обусловлено межмолекулярное взаимодействие. С электрическим моментом диполя молекулы связана реакционная способность вещества, его растворимость. Полярные молекулы жидкостей благоприятствуют электролитической диссоциации растворенных в них электролитов.

"