Все о тюнинге авто

Где отсутствуют молекулы днк. Общая биология. ДНК. Правда, что отправлять пробирки со своими анализами ДНК за пределы России запрещено

Дезоксирибонуклеиновая кислота или ДНК является носителем генетической информации. Главным образом, ДНК в клетках сосредоточена в ядре. Это основной компонент хромосом. У эукариот ДНК также обнаруживается еще в митохондриях и пластидах. ДНК состоит из мононуклеотидов, ковалентно связанных между собой, представляя собой длинный неразветвленный полимер. Мононуклеотиды, входящие в состав ДНК, состоят из дезоксирибозы, одного из 4-х азотистых оснований (аденин, гуанин, цитозин и тимин), и остатка фосфорной кислоты. Количество этих мононуклеотидов очень велико. Например, в клетках прокариот, содержащих одну единственную хромосому, ДНК представляет собой одну макромолекулу с молекулярной массой более 2 x 10 9 .

Мононуклеотиды одной цепи ДНК соединяются последовательно друг с другом благодаря образованию ковалентных фосфодиэфирных связей между ОН-группой дезоксирибозы одного мононуклеотида и остатком фосфорной кислоты другого. С одной стороны от образовавшегося остова одной цепи ДНК располагаются азотистые основания. Их можно сравнить, с четырьмя разными бусинками надетых на одну нить, т.к. они как бы нанизаны на сахарофосфатную цепь.

Возникает вопрос, как эта длинная полинуклеотидная цепь может кодировать программу развития клетки или даже целого организма? Ответ на этот вопрос можно получить, поняв, как образуется пространственная структура ДНК. Структура этой молекулы была расшифрована и описана Дж. Уотсоном и Ф. Криком в 1953 году.

Молекулы ДНК представляют собой две нити, которые располагаются параллельно друг другу и формируют правозакрученную спираль . Ширина этой спирали составляет около 2 нм, зато ее длина может достигать сотен тысяч нанометров. Уотсоном и Криком предложили модель ДНК, согласно которой все основания ДНК расположены внутри спирали, снаружи находится сахарофосфатный остов. Таким образом, основания одной цепи максимально сближены с основаниями другой,
поэтому между ними формируются водородные связи. Структура спирали ДНК такова, что полинуклеотидные цепи, которые входят в ее состав, могут быть разделены только после ее раскручивания.

Благодаря максимальной сближенности двух цепей ДНК в ее составе содержится одинаковое количество азотистых оснований одного типа (аденин и гуанин) и азотистых оснований другого типа (тимин и цитозин), т. е. справедлива формула: А+Г=Т+Ц . Это объясняется размерами азотистых оснований, а именно, длина структур, которые образуются благодаря возникновению водородной связи между парами аденин-тимин и гуанин-цитозин, приблизительно составляет 1,1 нм. Суммарные размеры этих пар соответствуют размерам внутренней части спирали ДНК. Для формирования спирали пара Ц-Т была бы слишком мала, а пара А-Г, наоборот, слишком велика. Т.е., азотистое основание первой цепи ДНК, определяет основание, которое располагается в том же самом месте другой цепи ДНК. Строгое соответствие нуклеотидов, расположенных в молекуле ДНК в парных цепочках параллельно друг другу, назвали комплементарностью (дополнительностью). Точное воспроизведение или репликация генетической информации возможна именно благодаря этой особенности молекулы ДНК.

В ДНК биологическая информация записана таким образом, что она может в точности копироваться и передаваться клеткам-потомкам. До деления клетки в ней происходит репликация (самоудвоение ) ДНК. Поскольку каждая цепь содержит последовательность нуклеотидов, комплементарную последовательности цепипартнера, то на самом деле они несут одинаковую генетическую информацию. Если разделить цепи и использовать каждую из них в качестве шаблона (матрицы)для построения второй цепи, то получится две новых идентичных цепи ДНК. Именно таким образом и происходит удвоение ДНК в клетке.

Совсем недавно в микробиологии и генетике произошел существенный прорыв, повлиявший на науку. Почти полностью раскодировали структуру ДНК. Расшифровка информации анализировалась, разрабатывались и вводились новые методы раскодировки молекулы, а знания стали эффективно применять на практике. В статье приводится общая информация о ДНК.

История

Нуклеиновые кислоты начали изучать в девятнадцатом веке. Фридрих Мишер в 1868 году впервые выделил из клеток нуклеин, который позже получил название дезоксирибонуклеиновой кислоты — ДНК. Однако в то время к открытию отнеслись довольно скептически и молекуле не придавалось особого значения. Лишь в середине двадцатого века благодаря опытам на мышах О.Эвери и Ф.Гриффита произошел коренной переворот. При изучении трансформации бактерий выяснилось, что за этот процесс отвечала молекула ДНК.

Позже Р.Франклин случайно использовала рентгеновское излучение для исследования структуры кристаллов, благодаря чему удалось сделать фотографию ДНК. На основании этого в 1953 году был сформулирован принцип саморепликации, а также воспроизводства жизни на Земле.

ДНК — состав

ДНК состоит из дезоксирибонуклеиновых и рибонуклеиновых кислот. Биополимеры состоят, в свою очередь, из мономеров, или нуклеотидов, содержащих три компонента, прочно соединенных между собой химическими связями.

Нуклеотиды ДНК содержат присоединенный к молекуле пятиуглеродный сахар из азотистого основания (аденина, гуанина, цитозина, тимина) с одной стороны и остатка фосфорной кислоты — с другой. Они соединены в длинные цепи.

В структуру ДНК входят две нити, соединяющиеся водородными связями. Они получили название двойной спирали. Такая структура имеется только в молекуле ДНК. В ней против одного основания азота в одной цепи лежит определенное основание в другой. Такие пары называются комплементарными, то есть дополняющими друг друга.

Геном человека

Огромное количество информации содержится всего в одной молекуле ДНК. Формула ее представляет собой строчку из заглавных букв названия пептидов. Это генетический код, то есть последовательность нуклеотидов, присущая определенному человеку.

Геном людей был открыт в 2001 году. Но полную картину представили миру лишь в 2007 году. Проект, начавшийся в 1990 году, затрагивал социальные, этические и даже моральные аспекты жизни человека. К 2003 году код был расшифрован на 99,99%. Поэтому и сегодня еще имеется неполная ясность процесса. Но ученые считают эту долю процента несущественным минусом.

Значение открытия

За наследственность отвечает ДНК. Расшифровка дает возможность изучения развития и жизни любого земного организма, и вмешательство врачей сегодня может немного изменить заложенные в молекуле процессы.

При наличии кода ДНК расшифровка его позволит врачу определить различные болезни, которые могут возникнуть у человека, прогнозировать их течение и подбирать лекарственные средства.

И по сей день еще не произошло полного понимания того, что значит раскодирование молекулы. Благодаря этому, например, стало известно, что неандертальцы умели разговаривать и не болели шизофренией и синдромом Дауна.

Молекулы ДНК у людей фактически одинаковы. Замена азотистых оснований в них может привести к мутациям и болезням. Хотя иногда наблюдается лишь предрасположенность к ним, и если человек не будет подвержен вредным привычкам, он сможет избежать их появления.

Медики знают уже пять тысяч заболеваний (многие из которых приводят к инвалидности), которые передаются посредством ДНК. Расшифровка молекулы позволит предупредить людей о предрасположенности. Тогда человек будет предпринимать профилактические меры, чтобы болезнь не развивалась. Так как генотип человека с возрастом не изменяется, достаточно один раз сдать анализы.

Технологии сегодня помогают выявить способности человека вплоть до вычисления оптимальных физических нагрузок, эффективного наращивания мышц и быстрого сброса лишних килограммов.

Изучение ДНК развивает уровень микробиологии, которая занимается вирусами, грибами и бактериями, вызывающими инфекции у человека. Благодаря этому такие отрасли, как биофармацевтика, пищевое, косметическое производство, экологический мониторинг и другие получают новый толчок для своего развития.

Молекулярная генетика раздел генетики, который занимается изучением наследственности на молекулярном уровне.

Нуклеиновые кислоты. Репликация ДНК. Реакции матричного синтеза

Нуклеиновые кислоты (ДНК, РНК) были открыты в 1868 году швейцарским биохимиком И.Ф. Мишером. Нуклеиновые кислоты – линейные биополимеры, состоящие из мономеров – нуклеотидов.

ДНК – структура и функции

Химическую структуру ДНК расшифровали в 1953 г. американский биохимик Дж. Уотсон и английский физик Ф. Крик.

Общая структура ДНК. Молекула ДНК состоит из 2 цепей, которые закручены в спираль (рис. 11) одна вокруг другой и вокруг общей оси. Молекулы ДНК могут содержать от 200 до 2х10 8 пар нуклеотидов. Вдоль спирали молекулы ДНК соседние нуклеотиды располагаются на расстоянии 0,34 нм друг от друга. Полный оборот спирали включает 10 пар нуклеотидов. Его длина составляет 3,4 нм.

Рис . 11 . Схема строения ДНК (двойная спираль)

Полимерность молекулы ДНК. Молекула ДНК – биоплоимер состоит из сложных соединений – нуклеотидов.

Строение нуклеотида ДНК. Нуклеотид ДНК состоит из 3 звеньев: одно из азотистых оснований (аденин, гуанин, цитозин, тимин); дезокисирибоза (моносахарид); остаток фосфорной кислоты (рис. 12).

Различают 2 группы азотистых оснований:

    пуриновые – аденин (А), гуанин (Г), содержащие два бензольных кольца;

    пиримидиновые – тимин (Т), цитозин (Ц), содержащие одно бензольное кольцо.

В состав ДНК входят следующие виды нуклеотидов: адениновый (А); гуаниновый (Г); цитозиновый (Ц); тиминовый (Т). Названия нуклеотидов соответствуют названиям азотистых оснований, входящих в их состав: адениновый нуклеотид азотистое основание аденин; гуаниновый нуклеотид азотистое основание гуанин; цитозиновый нуклеотид азотистое основание цитозин; тиминовый нуклеотид азотистое основание тимин.

Соединение двух цепей ДНК в одну молекулу

Нуклеотиды А, Г, Ц и Т одной цепи соединены соответственно с нуклеотидами Т, Ц, Г и А другой цепи водородными связями . Между А и Т формируется две водородные связи, а между Г и Ц – три водородные связи (А=Т, Г≡Ц).

Пары оснований (нуклеотидов) А – Т и Г – Ц называют комплементарными, т. е. взаимно соответствующими. Комплементарность – это химическое и морфологическое соответствие нуклеотидов друг другу в парных цепочках ДНК.

5 3

1 2 3

3’ 5’

Рис. 12 Участок двойной спирали ДНК. Строение нуклеотида (1– остаток фосфорной кислоты; 2– дезоксирибоза; 3– азотистое основание). Соединение нуклеотидов с помощью водородных связей.

Цепи в молекуле ДНК антипараллельны, т. е. направлены в противоположные стороны, так что 3’- конец одной цепи располагается напротив 5’- конца другой цепи. Генетическая информация в ДНК записана в направлении от 5’ конца к 3’ концу. Эта нить называется смысловой ДНК,

поскольку здесь расположены гены. Вторая нить – 3’–5’ служит эталоном хранения генетической информации.

Cоотношение между числом разных оснований в ДНК установлено Э. Чаргаффом в 1949 г. Чаргафф выявил, что у ДНК различных видов количество аденина равно количеству тимина, а количество гуанина – количеству цитозина.

Правило Э. Чаргаффа :

    в молекуле ДНК количество A (адениновых) нуклеотидов всегда равно количеству Т (тиминовых) нуклеотидов или отношение ∑ А к ∑ Т=1. Сумма Г (гуаниновых) нуклеотидов равна сумме Ц (цитозиновых) нуклеотидов или отношение ∑ Г к ∑ Ц=1;

    сумма пуриновых оснований (А+Г) равна сумме пиримидиновых оснований (Т+Ц) или отношение ∑ (А+Г) к ∑ (Т+Ц)=1;

Способ синтеза ДНК – репликация . Репликация – это процесс самоудвоения молекулы ДНК, осуществляемый в ядре под контролем ферментов. Самоудовоение молекулы ДНК происходит на основе комплементарности – строгого соответствия нуклеотидов друг другу в парных цепочках ДНК. В начале процесса репликации молекула ДНК раскручивается (деспирализуется) на определенном участке (рис. 13), при этом освобождаются водородные связи. На каждой из цепей, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимиразы, синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, содержащиеся в цитоплазме клеток. Эти нуклеотиды выстраиваются комплементарно нуклеотидам двух материнских цепей ДНК. Фермент ДНК-полимераза присоединяет комплементарные нуклеотиды к матричной цепи ДНК. Например, к нуклеотиду А матричной цепи полимераза присоединяет нуклеотид Т и, соответственно, к нуклеотиду Г – нуклеотид Ц (рис. 14). Сшивание комплементарных нуклеотидов происходит с помощью фермента ДНК-лигазы . Так путем самоудвоения синтезируются две дочерние цепи ДНК.

Образовавшиеся две молекулы ДНК из одной молекулы ДНК представляют собой полуконсервативную модель , поскольку состоят из старой материнской и новой дочерней цепей и являются точной копией материнской молекулы (рис. 14). Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерней.

Рис . 13 . Деспирализация молекулы ДНК с помощью фермента

1

Рис . 14 . Репликация – образование двух молекул ДНК из одной молекулы ДНК: 1 – дочерняя молекула ДНК; 2 – материнская (родительская) молекула ДНК.

Фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’ –> 5’. Поскольку комплементарные цепи в молекуле ДНК направлены в противоположные стороны, и фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’–>5’, то и синтез новых цепей идет антипараллельно (по принципу антипараллельности ).

Место локализации ДНК . ДНК содержится в ядре клетки, в матриксе митохондрий и хлоропластов.

Количество ДНК в клетке постоянно и составляет 6,6х10 -12 г.

Функции ДНК:

    Хранение и передача в ряду поколений генетической информации молекулам и - РНК;

    Структурная. ДНК является структурной основой хромосом (хромосома на 40% состоит из ДНК).

Видоспецифичность ДНК . Нуклеотидный состав ДНК служит критерием вида.

РНК, строение и функции.

Общая структура .

РНК – линейный биополимер, состоящий из одной полинуклеотидной цепи. Различают первичную и вторичную структуры РНК. Первичная структура РНК представляет собой одноцепочечную молекулу, а вторичная структура имеет форму креста и характерна для т- РНК.

Полимерность молекулы РНК . Молекула РНК может включать от 70 нуклеотидов до 30 000 нуклеотидов. Нуклеотиды, входящие в состав РНК, следующие: адениловый (А), гуаниловый (Г), цитидиловый (Ц), урациловый (У). В составе РНК тиминовый нуклеотид замещен на урациловый (У).

Строение нуклеотида РНК.

Нуклеотид РНК включает 3 звена:

    азотистое основание (аденин, гуанин, цитозин, урацил);

    моносахарид – рибоза (в рибозе присутствует кислород при каждом атоме углерода);

    остаток фосфорной кислоты.

Способ синтеза РНК – транскрипция . Транскрипция, как и репликация, – реакция матричного синтеза. Матрицей является молекула ДНК. Реакция протекает по принципу комплементарности на одной из цепей ДНК (рис. 15). Процесс транскрипции начинается с деспирализации молекулы ДНК на определенном участке. На транскрибируемой цепи ДНК имеется промотор – группа нуклеотидов ДНК, с которой начинается синтез молекулы РНК. К промотору присоединяется фермент РНК-полимераза . Фермент активизирует процесс транскрипции. По принципу комплементарности достраиваются нуклеотиды, поступающие из цитоплазмы клетки к транскрибируемой цепи ДНК. РНК-полимераза активизирует выстраивание нуклеотидов в одну цепь и формирование молекулы РНК.

В процессе транскрипции выделяют четыре стадии: 1) связывание РНК-полимеразы с промотором; 2) начало синтеза (инициация); 3) элонгация – рост цепи РНК, т. е. происходит последовательное присоединение нуклеотидов друг к другу; 4) терминация – завершение синтеза и-РНК.

Рис . 15 . Схема транскрипции

1 – молекула ДНК (двойная цепочка); 2 – молекула РНК; 3–кодоны; 4– промотор.

В 1972 г. американские ученые – вирусолог Х.М. Темин и молекулярный биолог Д. Балтимор на вирусах в опухолевых клетках открыли обратную транскрипцию. Обратная транскрипция – переписывание генетической информации с РНК на ДНК. Процесс протекает с помощью фермента обратной транскриптазы .

Виды РНК по функции

    Информационная, или матричная РНК (и-РНК, или м-РНК) переносит генетическую информацию с молекулы ДНК к месту синтеза белка – в рибосому. Синтезируется в ядре при участии фермента РНК-полимеразы. Она составляет 5% от всех видов РНК клетки. и- РНК включает от 300 нуклеотидов до 30 000 нуклеотидов (самая длинная цепь среди РНК).

    Транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка,– в рибосому. Имеет форму креста (рис. 16) и состоит из 70 – 85 нуклеотидов. Ее количество в клетке составляет 10-15 % РНК клетки.

Рис. 16. Схема строения т-РНК: А–Г – пары нуклеотидов, соединенные с помощью водородных связей; Д – место прикрепления аминокислоты (акцепторный участок); Е – антикодон.

3. Рибосомная РНК (р-РНК) синтезируется в ядрышке и входит в состав рибосом. Включает примерно 3000 нуклеотидов. Составляет 85% РНК клетки. Этот вид РНК содержатся в ядре, в рибосомах, на эндоплазматической сети, в хромосомах, в матриксе митохондрий, а также в пластидах.

Основы цитологии. Решение типовых задач

Задача 1

Сколько тиминовых и адениновых нуклеотидов содержится в ДНК, если в ней обнаружено 50 цитозиновых нуклеотидов, что составляет 10% от всех нуклеотидов.

Решение. По правилу комплементарности в двойной цепи ДНК цитозин всегда комплемпентарен гуанину. 50 цитозиновых нуклеотидов составляют 10%, следовательно, согласно правилу Чаргаффа, 50 гуаниновых нуклеотидов также составляют 10%, или (если ∑Ц =10%, то и ∑Г =10%).

Сумма пары нуклеотидов Ц + Г равна 20%

Сумма пары нуклеотидов Т + А = 100% – 20 % (Ц + Г) = 80 %

Для того, чтобы узнать, сколько тиминовых и адениновых нуклеотидов содержится в ДНК, нужно составить следующую пропорцию:

50 цитозиновых нуклеотидов → 10 %

Х (Т + А) →80 %

Х = 50х80:10=400 штук

Согласно правилу Чаргаффа ∑А= ∑Т, следовательно ∑А=200 и ∑Т=200.

Ответ: количество тиминовых, как и адениновых нуклеотидов в ДНК, равно 200.

Задача 2

Тиминовые нуклеотиды в ДНК составляют 18% от общего количества нуклеотидов. Определите процент остальных видов нуклеотидов, содержащихся в ДНК.

Решение. ∑Т=18%. Согласно правилу Чаргаффа ∑Т=∑А, следовательно на долю адениновых нуклеотидов также приходится 18 % (∑А=18%).

Сумма пары нуклеотидов Т+А равна 36 % (18 % + 18 % = 36 %). На пару нуклеотидов Ги Ц приходится: Г+Ц=100 % –36 %=64 %. Поскольку гуанин всегда комплементарен цитозину, то их содержание в ДНК будет равным,

т. е. ∑ Г= ∑Ц=32%.

Ответ : содержание гуанина, как и цитозина, составляет 32 %.

Задача 3

20 цитозиновых нуклеотидов ДНК составляют 10% от общего количества нуклеотидов. Сколько адениновых нуклеотидов содержится в молекуле ДНК?

Решение. В двойной цепочке ДНК количество цитозина равно количеству гуанина, следовательно, их сумма составляет: Ц+Г=40 нуклеотидов. Находим общее количество нуклеотидов:

20 цитозиновых нуклеотидов → 10 %

Х (общее количество нуклеотидов) →100 %

Х=20х100:10=200 штук

А+Т=200 – 40=160 штук

Так как аденин комплементарен тимину, то их содержание будет равным,

т. е. 160 штук: 2=80 штук, или ∑А=∑Т=80.

Ответ : в молекуле ДНК содержится 80 адениновых нуклеотидов.

Задача 4

Допишите нуклеотиды правой цепи ДНК, если известны нуклеотиды ее левой цепи: АГА – ТАТ – ГТГ – ТЦТ

Решение. Построение правой цепи ДНК по заданной левой цепи производится по принципу комплементарности – строгого соответствия нуклеотидов друг другу: аденонивый – тиминовый (А–Т), гуаниновый – цитозиновый (Г–Ц). Поэтому нуклеотиды правой цепи ДНК должны быть следующие: ТЦТ – АТА – ЦАЦ – АГА.

Ответ : нуклеотиды правой цепи ДНК: ТЦТ – АТА – ЦАЦ – АГА.

Задача 5

Запишите транскрипцию, если транскрибируемая цепочка ДНК имеет следующий порядок нуклеотидов: АГА – ТАТ – ТГТ – ТЦТ.

Решение . Молекула и-РНК синтезируется по принципу комплеиентарности на одной из цепей молекулы ДНК. Нам известен порядок нуклеотидов в транскрибируемой цепи ДНК. Следовательно, надо построить комплементарную цепь и-РНК. Следует помнить, что вместо тимина в молекулу РНК входит урацил. Следовательно:

Цепь ДНК: АГА – ТАТ – ТГТ – ТЦТ

Цепь и-РНК: УЦУ – АУА –АЦА –АГА.

Ответ : последовательность нуклеотидов и-РНК следующая: УЦУ – АУА – АЦА –АГА.

Задача 6

Запишите обратную транскрипцию, т. е. постройте фрагмент двухцепочечной молекулы ДНК по предложенному фрагменту и-РНК, если цепочка и- РНК имеет следующую последовательность нуклеотидов:

ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА

Решение. Обратная транскрипция – это синтез молекулы ДНК на основе генетического кода и-РНК. Кодирующая молекулу ДНК и-РНК имеет следующий порядок нуклеотидов: ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА. Комплементарная ей цепочка ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА – ТЦТ. Вторая цепочка ДНК: ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Ответ : в результате обратной транскрипции синтезированы две цепочки молекулы ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА и ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Генетический код. Биосинтез белка.

Ген – участок молекулы ДНК, содержащий генетическую информацию о первичной структуре одного определенного белка.

Экзон-интронная структура гена эукариот

    промотор – участок ДНК (длиной до 100 нуклеотидов), к которому присоединяется фермент РНК-полимераза , необходимый для осуществления транскрипции;

2) регуляторная зона – зона, влияющая на активность гена;

3) структурная часть гена – генетическая информация о первичной структуре белка.

Последовательность нуклеотидов ДНК, несущая генетическую информацию о первичной структуре белка – экзон . Они также входят в состав и-РНК. Последовательность нуклеотидов ДНК, не несущая генетическую информацию о первичной структуре белка – интрон . Они не входят в состав и-РНК. В ходе транскрипции с помощью специальных ферментов происходит вырезание копий интронов из и-РНК и сшивание копий экзонов при образовании молекулы и-РНК (рис. 20). Этот процесс называется сплайсинг .

Рис . 20 . Схема сплайсинга (формирование зрелой и-РНК у эукариот)

Генетический код – система последовательности нуклеотидов в молекуле ДНК, или и-РНК, которая соответствует последовательности аминокислот в полипептидной цепи.

Свойства генетического кода:

    Триплетность (АЦА – ГТГ – ГЦГ…)

Генетический код является триплетным, так как каждая из 20 аминокислот кодируется последовательностью трех нуклеотидов (триплетом , кодоном) .

Существует 64 вида триплетов нуклеотидов (4 3 =64).

    Однозначность (специфичность)

Генетический код является однозначным, так как каждый отдельный триплет нуклеотидов (кодон) кодирует только одну аминокислоту, или один кодон всегда соответствует одной аминокислоте (таблица 3).

    Множественность (избыточность, или вырожденность)

Одна и та же аминокислота может кодироваться несколькими триплетами (от 2 до 6), т. к. белокобразующих аминокислот –20, а триплетов – 64.

    Непрерывность

Считывание генетической информации происходит в одном направлении, слева направо. Если произойдет выпадение одного нуклеотида, то при считывании его место займет ближайший нуклеотид из соседнего триплета, что приведет к изменению генетической информации.

    Универсальность

Генетический код характерен для всех живых организмов, и одинаковые триплеты кодируют одну и ту же аминокислоту у всех живых организмов.

    Имеет стартовые и терминальные триплеты (стартовый триплет – АУГ, терминальные триплеты УАА, УГА, УАГ). Эти виды триплетов не кодируют аминокислоты.

    Неперекрываемость (дискретность)

Генетический код является неперекрывающимся, так как один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов. Нуклеотиды могут принадлежать только одному триплету, а если переставить их в другой триплет, то произойдет изменение генетической информации.

Таблица 3 – Таблица генетического кода

Основания кодонов

Примечание: сокращенные названия аминокислот даны в соответствии с международной терминологией.

Биосинтез белка

Биосинтез белка – вид пластического обмена веществ в клетке, происходящий в живых организмах под действием ферментов. Биосинтезу белка предшествуют реакции матричного синтеза (репликация – синтез ДНК; транскрипция – синтез РНК; трансляция – сборка молекул белка на рибосомах). В процессе биосинтеза белка выделяют 2 этапа:

    транскрипция

    трансляция

В ходе транскрипции генетическая информация, заключенная в ДНК, находящейся в хромосомах ядра, передается молекуле РНК. По завершении процесса транскрипции и-РНК выходит в цитоплазму клетки через поры в мембране ядра, располагается между 2 субъединицами рибосомы и участвует в биосинтезе белка.

Трансляция – процесс перевода генетического кода в последовательность аминокислот. Трансляция осуществляется в цитоплазме клетки на рибосомах, которые располагаются на поверхности ЭПС (эндоплазматической сети). Рибосомы – сферические гранулы, диаметром, в среднем, 20 нм, состоящие из большой и малой субъединиц. Молекула и-РНК располагается между двумя субъединицами рибосомы. В процессе трансляции участвуют аминокислоты, АТФ, и-РНК, т-РНК, фермент амино-ацил т-РНК-синтетаза.

Кодон – участок молекулы ДНК, или и-РНК, состоящий из трех последовательно расположенных нуклеотидов, кодирующий одну аминокислоту.

Антикодон – участок молекулы т-РНК, состоящий из трех последовательно расположенных нуклеотидов и комплементарный кодону молекулы и-РНК. Кодоны комплементарны соответствующим антикодонам и соединяются с ними с помощью водородных связей (рис. 21).

Синтез белка начинается со стартового кодона АУГ . От него рибосома

перемещается по молекуле и-РНК, триплет за триплетом. Аминокислоты поступают по генетическому коду. Встраивание их в полипептидную цепь на рибосоме происходит с помощью т-РНК. Первичная структура т-РНК (цепочка) переходит во вторичную структуру, напоминающую по форме крест, и при этом в ней сохраняется комплементарность нуклеотидов. В нижней части т-РНК имеется акцепторный участок, к которому присоединяется аминокислота (рис.16). Активизация аминокислоты осуществляется при помощи фермента аминоацил т-РНК-синтетазы . Суть этого процесса состоит в том, что данный фермент взаимодействует с аминокислотой и с АТФ. При этом формируется тройной комплекс, представленный данным ферментом, аминокислотой и АТФ. Аминокислота обогащается энергией, активизируется, приобретает способность образовывать пептидные связи с соседней аминокислотой. Без процесса активизации аминокислоты полипептидная цепь из аминокислт сформироваться не может.

В противоположной, верхней части молекулы т-РНК содержится триплет нуклеотидов антикодон , с помощью которого т-РНК прикрепляется к комплементарному ему кодону (рис. 22).

Первая молекула т-РНК, с присоединенной к ней активизированной аминокислотой, своим антикодоном прикрепляется к кодону и-РНК, и в рибосоме оказывается одна аминокислота. Затем прикрепляется вторая т-РНК своим антикодоном к соответствующему кодону и-РНК. При этом в рибосоме оказываются уже 2 аминокислоты, между которыми формируется пептидная связь. Первая т-РНК покидает рибосому, как только отдаст аминокислоту в полипептидную цепь на рибосоме. Затем к дипептиду присоединяется 3-я аминокислота, ее приносит третья т-РНК и т. д. Синтез белка останавливается на одном из терминальных кодонов – УАА, УАГ, УГА (рис. 23).

1 – кодон и-РНК; кодоны UCG – УЦГ ; CUA – ЦУА ; CGU – ЦГУ ;

2– антикодон т-РНК; антикодон GAT – ГАТ

Рис . 21 . Фаза трансляции: кодон и-РНК притягивается к антикодону т-РНК соответствующими комплементарными нуклеотидами (основаниями)

Молекула ДНК - засекреченный источник данных жизни

Прогресс науки не оставляет сомнений в том, что живые существа имеют чрезвычайно сложную структуру и слишком совершенную организацию, возникновение которой не может считаться случайностью. Это свидетельствует о том факте, что живые существа созданы Всемогущим Творцом, обладающим высшими знаниями. Недавно, например, с объяснением совершенной структуры человеческого гена, что стало весомой задачей Проекта Генома человека – уникальное создание Бога ещё раз предстало на всеобщее обозрение.

От США до Китая учёные со всего мира уже около десятилетия стараются расшифровать 3 миллиарда химических букв в молекуле ДНК и установить их последовательность. В результате, 85% данных, содержащихся в молекуле ДНК человеческих существ, могли бы быть секвенированы. Хотя это развитие является захватывающим и важным, доктор Фрэнсис Колинз, который возглавляет Проект, Человеческого Генома утверждает, что на данный момент изучении структуры молекулы ДНК и в расшифровке информации сделан только первый шаг.

Для того чтобы понять, почему расшифровка этой информации занимает столько времени, мы должны понять природу информации, хранящейся в структуре молекулы ДНК.

Секретная структура молекулы ДНК

В производстве технологического продукта или в управлении заводом наиболее используемыми инструментами являются опыт и накопление знаний, приобретённых за многие столетия.

Как может цепочка невидимая для глаза, состоящая из атомов, собранных в виде дорожек, с размером в одну миллиардную миллиметра обладать такой вместимостью информации и памяти?

К этому вопросу существует прибавляется следующее: если каждая из 100 триллионов клеток в твоём теле знает один миллион страниц информации наизусть, сколько энциклопедических страниц можете Вы, как умный и сознательный человек запомнить за всю жизнь? Самое главное это то, что клетка использует эту информацию без изьянов, чрезвычайно спланированным и согласованным образом, в правильных местах и никогда не совершает ошибок. Даже до того, как человек рождается на свет, его клетки уже начали процесс его созидания.

Дезоксирибонуклеиновые кислоты (ДНК), высокополимерные природные соединения, содержащиеся в ядрах клеток живых организмов; вместе с белками гистонами образуют вещество хромосом. ДНК - носитель генетической информации, ее отдельные участки соответствуют определенным генам. Молекула ДНК состоит из 2-х полинуклеотидных цепей, закрученных одна вокруг другой в спираль. Цепи построены из большого числа мономеров 4-х типов - нуклеотидов, специфичность которых определяется одним из 4-х азотистых оснований (аденин, гуанин, цитозин, тимин). Сочетания трех рядом стоящих нуклеотидов в цепи ДНК (триплеты, или кодоны) составляют код генетический. Нарушения последовательности нуклеотидов в цепи ДНК приводят к наследственным изменениям в организме - мутациям. ДНК точно воспроизводится при делении клеток, что обеспечивает в ряду поколений клеток и организмов передачу наследственных признаков и специфических форм обмена веществ.

Дезоксирибонуклеиновые кислоты (ДНК), нуклеиновые кислоты, содержащие в качестве углеводного компонента дезоксирибозу. ДНК является основной составляющей хромосом всех живых организмов; ею представлены гены всех про- и эукариот, а также геномы многих вирусов. В нуклеотидной последовательности ДНК записана (кодирована) генетическая информация о всех признаках вида и особенностях особи (индивидуума) - ее генотип. ДНК регулирует биосинтез компонентов клеток и тканей, определяет деятельность организма в течение всей его жизни.

История открытия и изучения ДНК

Уже в середине 19 века было установлено, что способность к наследованию тех или иных признаков организмов связана с материалом, содержащимся в клеточном ядре. В 1868-72 гг. швейцарский биохимик И. Ф. Мишер выделил из клеток гноя (лейкоцитов) и спермы лосося вещество, которое им было названо нуклеином, а впоследствии получило название дезоксирибонуклеиновая кислота.

В конце 19 - начале 20 вв. благодаря работам Л. Кесселя, П. Левена, Э. Фишера и др. было установлено, что молекулы ДНК представляют собой линейные полимерные цепи, состоящие из многих тысяч соединенных друг с другом мономеров - дезоксирибонуклеотидов четырех типов. Эти нуклеотиды образованы остатками пятиуглеродного сахара дезоксирибозы, фосфорной кислоты и одним из четырех азотистых оснований: пуринов - аденина и гуанина и пиримидинов - цитозина и тимина. Для обозначения оснований стали использовать начальные буквы их названий на английском или русском (в русскоязычной научной литературе) языке: соответственно A, G (Г), С (Ц) и Т.

Долгое время считалось, что ДНК содержится только в клетках животных, пока в 1930-х гг. российским биохимиком А. Н. Белозерским не было показано, что ДНК является обязательным компонентом всех живых клеток. Первые доказательства генетической роли ДНК (как вещества наследственности) были получены в 1944 группой американских ученых (О. Эйвери и др.), которые в опытах на бактериях однозначно установили, что с ее помощью наследуемый признак может быть перенесен от одной клетки к другой.

К середине 20 в. работами английских ученых (А. Тодд и др.) было окончательно выяснено строение нуклеотидов, которые служат мономерными звеньями в молекуле ДНК, и тип межнуклеотидной связи. Все нуклеотиды соединены между собой 3"-, 5"-фосфодиэфирной связью таким образом, что остаток фосфорной кислоты служит связующим звеном между 3"-углеродным атомом дезоксирибозы одного нуклеотида и 5"-углеродным атомом дезоксирибозы другого нуклеотида. На основании этого в каждой цепи ДНК выделяют 3"-конец и 5"-конец молекулы.

Структура ДНК. Открытие «двойной спирали»

В 1950 американский биохимик Э. Чаргафф обнаружил существенные различия в нуклеотидном составе ДНК из разных источников. Кроме того, оказалось, что состав нуклеотидов в молекуле ДНК подчиняется ряду закономерностей, главные из которых - равенство суммарного количества пуриновых и пиримидиновых оснований и равенство количества аденина и тинина (А-Т) и гуанина и цитозина (Г-Ц). В 1953 американский биохимик Дж.Уотсон и английский физик Ф. Крик на основании рентгеноструктурного анализа кристаллов ДНК (лаборатория М. Уилкинса) и, основываясь на данных Чаргаффа, предложили трехмерную модель ее структуры. Согласно этой модели молекулы ДНК представляют собой две правозакрученные вокруг общей оси полинуклеотидных цепи, или двойную спираль. На один виток спирали приходится примерно 10 нуклеотидных остатков. Цепи в этой двойной спирали антипараллельны, то есть направлены в противоположные стороны, так что 3"-конец одной цепи располагается напротив 5"-конца другой.

Остовы цепей образованы остатками дезоксирибозы и отрицательно заряженными фосфатными группами. Они находятся на внешней стороне двойной спирали (обращены к поверхности молекулы). Плохо растворимые в воде (гидрофобные) пуриновые и пиримидиновые основания обеих цепей ориентированы внутрь и расположены перпендикулярно оси двойной спирали.

Антипараллельные полинуклеотидные цепи двойной спирали ДНК не идентичны ни по последовательности оснований, ни по нуклеотидному составу. Однако они комплементарны друг другу: где бы ни появился в одной цепи аденин, напротив него в другой цепи обязательно будет стоять тимин, а против гуанина в одной цепи обязательно стоит цитозин другой цепи. Это означает, что последовательность оснований в одной цепи однозначно определяет последовательность оснований в другой (комплементарной) цепи молекулы. Более того, эти пары оснований образуют между собой водородные связи (три связи имеется в паре Г-Ц и две - между А-Т). Водородные связи и гидрофобные взаимодействия играют главную роль в стабилизации двойной спирали ДНК.

Нагревание, значительные изменения рH и ряд других факторов вызывают денатурацию молекулы ДНК, приводящую к разделению ее цепей. В определенных условиях возможно полное восстановление исходной (нативной) структуры молекулы ДНК, ее ренатурация. Способность комплементарных цепей ДНК легко разъединяться, а затем вновь восстанавливать исходную структуру лежит в основе самовоспроизведения молекулы ДНК, ее репликации (удвоения): если две комплементарные цепи ДНК разделить, а затем на каждой, как на матрице, построить новые, строго комплементарные им цепи, то две вновь образовавшиеся молекулы будут идентичны исходной. Открытие этого принципа позволило на молекулярном уровне объяснить явление наследственности.

Сходство и различие строения природных ДНК. Размеры

Почти все природные ДНК состоят из двух цепей (исключение составляют одноцепочечные ДНК некоторых вирусов). При этом ДНК может иметь линейную форму или кольцевую (когда концы молекулы ковалентно замкнуты). В клетках прокариот ДНК организована в одну хромосому (нуклеоид) и представлена одной кольцевой макромолекулой с молекулярной массой более 10. Кроме того, в клетках некоторых бактерий имеется одна или несколько плазмид - небольших кольцевых молекул ДНК, не связанных с хромосомой. У эукариот основная масса ДНК находится в ядре клетки в составе хромосом (ядерная ДНК). В каждой хромосоме эукариот имеется только одна линейная молекула ДНК, но так как во всех клетках эукариот (кроме половых) присутствует двойной набор гомологичных хромосом, то и ДНК представлена двумя неидентичными копиями, полученными организмом от отца и матери при слиянии половых клеток. Молекулярная масса эукариотических ДНК выше, чем у ДНК прокариот (например, в одной из хромосом плодовой мушки дрозофилы она достигает 7,9 х 1010). Кроме того, в состав митохондрий и хлоропластов входят кольцевые молекулы ДНК с молекулярной массой 106-107. ДНК этих органелл называют цитоплазматической; она составляет примерно 0,1% всей клеточной ДНК.

Размеры молекул ДНК обычно выражаются числом образующих их нуклеотидов. Эти размеры варьирует от нескольких тысяч пар нуклеотидов у бактериальных плазмид и некоторых вирусов до многих сотен тысяч пар нуклеотидов у высших организмов. Такие гигантские молекулы должны быть чрезвычайно компактно упакованы в клетках и вирусах. Например, длина ДНК нуклеотида кишечной палочки, состоящей примерно из четырех миллионов пар нуклеотидов, равна 1,4 мм, что в 700 раз превышает размеры самой бактериальной клетки. Общая длина всей ДНК в одной единственной клетке человека составляет примерно 2 м. Если же учесть, что организм взрослого человека состоит примерно из 1013 клеток, то общая длина всей ДНК человека должна составлять около 2х1013 м, или 2х1010 км (для сравнения: окружность земного шара - 4х104 км, а расстояние от Земли до Солнца - 1,44х108 км). Каким же образом происходит упаковка гигантских молекул ДНК в малом объеме клетки или вируса? Двойная спираль ДНК не является абсолютно жесткой, что делает возможным образование перегибов, петель, сверхспиральных структур и т. д. В нуклеоиде бактерий такая укладка поддерживается небольшим количеством специальных белков и, возможно, рибонуклеиновыми кислотами. В эукариотических клетках с помощью универсального набора основных белков гистонов и некоторых негистоновых белков ДНК превращается в очень компактное образование - хроматин, который является основным компонентом хромосом. Например, длина ДНК самой большой хромосомы человека равна 8 см, а в составе хромосомы благодаря упаковке она не превышает 8 нм.

Отдельные участки ДНК, кодирующие первичную структуру белка (полипептида) и РНК, называются генами. Наследственная информация записана в линейной последовательности нуклеотидов. У разных организмов она строго индивидуальна и служит важнейшей характеристикой, отличающей одну молекулу ДНК от другой и, соответственно, один ген от другого. Животные разных видов отличаются друг от друга потому, что молекулы ДНК их клеток имеют разную последовательность нуклеотидов, то есть несут разную информацию.

Биосинтез ДНК

Биосинтез ДНК происходит путем репликации, обеспечивающей точное копирование генетической информации и передачу ее от поколения к поколению. Этот процесс происходит при участии фермента ДНК-полимеразы. Матрицей для синтеза ДНК может служить и однонитевая (одноцепочечная) молекула рибонуклеиновой кислоты (РНК), что происходит, например, при заражении клеток ретровирусами (в их числе и вирусом СПИДа). Жизненный цикл этих вирусов включает обратный поток информации - от РНК к ДНК. При этом комплементарное копирование РНК в ДНК осуществляется с помощью фермента обратной транскриптазы. В ходе жизнедеятельности организмов их ДНК под влиянием внешних факторов может подвергаться различным повреждениям (мутациям), связанным с нарушением структуры азотистых оснований. В ходе эволюции клетки выработали защитные механизмы, обеспечивающие восстановление ее исходной структуры - репарацию ДНК.

Разработаны эффективные методы определения последовательности нуклеотидов в молекулах ДНК, благодаря которым накоплена огромная информация о ее первичной структуре в генах многих вирусов, некоторых митохондрий и хлоропластов, а также отдельных генов и фрагментов крупных геномов. Полностью определена нуклеотидная последовательность ДНК дрожжей, червя нематоды (150 млн. пар нуклеотидов). В рамках международной программы «Геном человека» в основном завершено установление нуклеотидной последовательности всей ДНК в геноме человека (3 млрд. пар нуклеотидов).

Знание последовательности чередования нуклеотидов в молекуле ДНК важно при анализе наследственных заболеваний человека, при выделении отдельных генов и других функционально важных участков ДНК; оно позволяет, используя генетический код, безошибочно установить первичную структуру белков, кодируемых определенными генами. Информация о первичной структуре ДНК широко используется в генетической инженерии при создании рекомбинантных ДНК - молекул с заданными свойствами, включающих компоненты ДНК из разных организмов.