Все о тюнинге авто

Значение скорости света в вакууме примерно равно. Выведение формулы скорости света. Значения и понятие

Человека всегда интересовала природа света, о чем свидетельствуют мифы, легенды, дошедшие до нас философские споры и научные наблюдения. Свет всегда был поводом для дискуссий древних философов, а попытки его изучения предпринимались еще во времена возникновения эвклидовой геометрии - за 300 лет до н.э. Уже тогда было известно о прямолинейности распространения света, равенстве углов падения и отражения, явлении преломления света, обсуждались причины возникновения радуги. Аристотель считал, что скорость света бесконечно велика, а значит, логически рассуждая, и света не подлежит обсуждению. Типичный случай, когда проблема своей глубиной опережает эпоху понимания ответа.

Каких-то 900 лет назад Авиценна предположил, что какой бы большой ни была скорость света она, все-таки, имеет конечную величину. Такого мнения был не только он, но никому не удавалось доказать это экспериментально. Гениальный Галилео Галилей предложил эксперимент механистического понимания проблемы: два человека, стоящие на расстоянии нескольких километров друг от друга, подают сигналы, открывая заслонку фонаря. Как только второй участник увидит свет от первого фонаря, он открывает свою заслонку и первый участник фиксирует время получения ответного светового сигнала. Затем расстояние увеличивается и все повторяется. Ожидалось зафиксировать увеличение задержки и на этой основе выполнить расчет скорости света. Эксперимент закончился ничем, потому как «все было не внезапно, но чрезвычайно быстро».

Первым измерил скорость света в вакууме в 1676 году астроном Оле Ремер - он воспользовался открытием Галилея: тот обнаружил в 1609 году четыре у которых в течение полугода разница времени между двумя затмениями спутника составляла 1320 секунд. Пользуясь астрономическими сведениями своего времени Ремер получил значение скорости света равным 222000 км в секунду. Потрясающим оказалось то, что сам метод измерения невероятно точен - применение ныне известных данных диаметра Юпитера и времени запаздывания затемнения спутника дает скорость света в вакууме, на уровне современных значений, полученных другими способами.

Поначалу к опытам Ремера была только одна претензия - необходимо было провести измерения земными средствами. Прошло почти 200 лет, и Луи Физо построил остроумную установку, в которой луч света отражался от зеркала на расстоянии более 8 км и приходил обратно. Тонкость была в том, что он проходил по дороге туда-обратно через впадины зубчатого колеса, и если скорость вращения колеса увеличивать, то настанет момент, когда свет перестанет быть виден. Остальное - дело техники. Результат измерения - 312000 км в секунду. Мы сейчас видим, что Физо был еще ближе к истине.

Следующий шаг в измерении скорости света сделал Фуко, который заменил зубчатое колесо Это позволило уменьшить габариты установки и увеличить точность измерения до 288000 км в секунду. Не меньшей важности был и проделанный Фуко эксперимент, в котором он определил скорость света в среде. Для этого между зеркалами установки была помещена труба с водой. В этом опыте было установлено уменьшение скорости света при его распространении в среде в зависимости от коэффициента преломления.

Во второй половине 19-го века наступило время Майкельсона, который посвятил 40 лет своей жизни измерениям в области света. Венцом его работы стала установка, на которой он измерил скорость света в вакууме используя вакуумированную металлическую трубу длиной более полутора километров. Другим фундаментальным достижением Майкельсона было доказательство того факта, что для любой длины волны скорость света в вакууме одинаковая и в качестве современного эталона составляет 299792458+/- 1.2 м/c. Такие измерения проводились на основании уточненных значений эталонного метра, определение которого утверждено с 1983 г. в качестве международного стандарта.

Мудрый Аристотель был неправ, но чтобы это доказать понадобилось почти 2000 лет.

> Скорость света

Узнайте, какая скорость света в вакууме – фундаментальная постоянная в физике. Читайте, чему равна скорость распространения света м/с, закон, формула измерения.

Скорость света в вакууме – одна из фундаментальных постоянных в физике.

Задача обучения

  • Сопоставить скорость света с показателем преломления среды.

Основные пункты

  • Максимально возможный показатель световой скорости – свет в вакууме (неизменная).
  • С – символ световой скорости в вакууме. Достигает 299 792 458 м/с.
  • Когда свет попадает в среду, его скорость замедляется из-за преломления. Вычисляется по формуле v = c/n.

Термины

  • Специальная скорость света: примирение принципа относительности и постоянства световой скорости.
  • Показатель преломления – соотношение скорости света в воздухе/вакууме с другой средой.

Скорость света

Скорость света выступает точкой сравнения, чтобы определить что-то как чрезвычайно быстрое. Но что это такое?

Световой пучок перемещается от Земли к Луне за временной промежуток, требуемый для прохождения светового импульса – 1.255 с на средней орбитальной дистанции

Ответ простой: речь идет о скорости фотона и легких частиц. Чему ровна скорость света? Световая скорость в вакууме достигает 299 792 458 м/с. Это универсальная постоянная, применимая в различных областях физики.

Возьмем уравнение E = mc 2 (E – энергия и m – масса). Это эквивалент массы-энергии, использующий световую скорость, чтобы связать пространство и время. Здесь можно отыскать не только объяснение для энергии, но выявить препятствия для скорости.

Скорость волны света в вакууме активно используют для различных целей. Например, в специальной теории относительности указывается, что это естественный скоростной предел. Но мы знаем, что скорость зависит от среды и преломления:

v = c/n (v – действительная скорость света, проходящего сквозь среду, c – скорость света в вакууме и n – показатель преломления). Показатель преломления воздуха – 1.0003, а скорость видимого света на 90 км/с медленнее с.

Коэффициент Лоренца

Стремительно перемещающиеся объекты показывают определенные характеристики, вступающие в противоречие с позицией классической механики. К примеру, длинные контакты и время расширяются. Обычно эти эффекты минимальны, но проглядываются отчетливее на таких огромных скоростях. Коэффициент Лоренца (γ) – фактор, где происходит расширение времени и сокращение длины:

γ = (1 - v 2 /с 2) -1/2 γ = (1 - v 2 /с 2) -1/2 γ = (1 - v 2 /c 2) -1/2 .

При малых скоростях v 2 /c 2 приближается к 0, а γ примерно = 1. Однако, когда скорость подходит к с, γ возрастает к бесконечности.

Свет во все времена занимал немаловажное место в выживании людей и создании ими развитой цивилизации, которую мы видим на сегодняшний день. Скорость света на протяжении всей истории развития человечества будоражила умы сначала философов и естествоиспытателей, а потом ученых и физиков. Это основополагающая константа существования нашей Вселенной.

Многие ученые в разные времена стремились выяснить, чему равняется распространения света в разнообразных средах. Наибольшее значение для науки имело вычисление значения, которое имеет скорость света в вакууме. Данная статья поможет вам разобраться в этом вопросе и узнать много интересного о том, как ведет себя свет в вакууме.

Свет и вопрос скорости

Свет в современной физике играет ключевую роль, ведь, как выяснилось, преодолеть значение его скорости на данном этапе развития нашей цивилизации невозможно. Много лет потребовалось для того, чтобы измерить, чему равна скорость света. До этого ученые провели немало исследований, пытаясь дать ответ на самые важный вопрос «чему равна скорость распространения в вакууме света?».
На данный момент времени ученые доказали, что скорость распространения света (СРС) обладает следующими характеристиками:

  • она постоянна;
  • она неизменна;
  • она недостижима;
  • она конечна.

Обратите внимание! Скорость света на текущий момент развития науки является абсолютно недостижимой величиной. У физиков существуют только некоторые предположения, что происходит с объектом, который гипотетически достигает значения скорости распространения светового потока в вакууме.

Скорость светового потока

Почему же так важно, с какой быстротой продвигается свет в вакууме? Ответ прост. Ведь вакуум находится в космосе. Поэтому узнав, какой цифровой показатель имеет скорость света в вакууме, мы сможем понять, с какой максимально возможной быстротой можно перемещаться по просторам Солнечной системы и за ее пределами.
Элементарными частичками, которые переносят свет в нашей Вселенной, являются фотоны. А быстрота, с которой продвигается свет в вакууме, считается абсолютной величиной.

Обратите внимание! Под СРС подразумевается быстрота продвижения электромагнитных волн. Интересно, что свет одномоментно являет собой элементарные частицы (фотоны) и волну. Это следует из корпускулярно-волновой теории. Согласно ней при определенных ситуациях свет ведет себя подобно частице, а при других – подобно волне.

На данный момент времени распространение света в космосе (вакууме) считается фундаментальной постоянной, которая не зависит от выбора используемой инерциальной системы отсчета. Данное значение относится к физическим фундаментальным постоянным. При этом значение СРС характеризует в целом основные свойства геометрии пространства-времени.
Современные представления характеризуют СРС как константу, которая является предельной допустимым значением для движения частиц, а также распространения их взаимодействия. В физике эта величина обозначается латинской буквой «с».

История изучения вопроса

В древние времена, как ни удивительно, еще античные мыслители задавались вопросом распространения света в нашей вселенной. Тогда считалось, что это бесконечная величина. Первую оценку физическому явлению скорости света дал Олаф Ремер лишь в 1676 г. Согласно его расчетам распространение света составляло примерно 220 тысяч км/с.

Обратите внимание! Олаф Ремер дал приблизительное значение, но, как в последствии выяснилось, не очень отдаленное от реального.

Правильное значение скоростного показателя, с которым продвигается свет в вакууме, было определенно только через полвека после Олафа Ремера. Это смог сделать французский физик А.И.Л. Физо, проведя особый эксперимент.

Эксперимент Физо

Он смог измерить это физическое явление путем измерения времени, за которое луч прошел определенный и точно измеренный участок.
Опыт имел следующий вид:

  • источник S испускал световой поток;
  • он отражался от зеркала (3);
  • после этого световой поток прерывался при помощи зубчатого диска (2);
  • затем оно проходил базу, расстояние которого равнялось 8 км;
  • после этого световой поток отражался зеркалом (1) и отправлялся в обратный путь к диску.

В ходе эксперимента световой поток попадал в промежутки между зубцами диска, и его можно было наблюдать через окуляр (4). Физо определял время прохождения луча по скорости вращения диска. В результате этого эксперимента он получил значение с = 313300 км/с.
Но это не конец исследований, которые были посвящены данному вопросу. Конечная формула расчета физической константы появилась благодаря многим ученым, включая и Альберта Эйнштейна.

Эйнштейн и вакуум: конечные результаты расчета

Сегодня каждый человек на Земле знает, что предельно допустимой величиной перемещения материальных объектов, а также любых сигналов, считается именно скорость света в вакууме. Точное значение этого показателя — почти 300 тыс. км/с. Если быть точным, то скорость распространения в вакууме света составляет 299 792 458 м/с.
Теорию о том, что невозможно превысить данное значение, выдвинул известный физик прошлого Альберт Эйнштейн в своей специальной теории относительности или СТО.

Обратите внимание! Теория относительности Эйнштейна считается незыблемой до момента появления реальных доказательств того, что передача сигнала возможна на скоростях, превышающих СРС в вакууме.

Теория относительности Эйнштейна

Но сегодня некоторые исследователи открыли явления, которые могут служить предпосылкой к тому, что СТО Эйнштейна может быть изменена. При некоторых специально заданных условиях имеется возможность отслеживать появление сверхсветовых скоростей. Интересно то, что при этом нарушение теории относительности не происходит.

Почему нельзя двигаться быстрее света

На сегодняшний день в данном вопросе существуют некоторые «подводные камни». Например, почему при обычных условиях константа СРС не может быть преодолена? По принятой теории в этой ситуации будет нарушаться фундаментальный принцип строения нашего мира, а именно — закон причинности. Он утверждает, что следствие по определению не способно опережать свою причину. Образно говоря, не может быть такого, что сначала медведь упадет замертво, а только потом раздастся выстрел охотника, застрелившего его. А вот если СРС превысить, то события должны начать происходить в обратной последовательности. В результате время начнет свой обратный бег.

Так чему все же равна скорость распространения светового луча?

После многочисленных исследований, которые приводились с целью определения точного значения, чему равно СРС, были получены конкретные цифры. На сегодняшний день с = 1 079 252 848,8 километров/час или 299 792 458 м/c. а в планковских единицах данный параметр определяется как единица. Это означает, что энергия света за 1 единицу планковского времени проходит 1 планковскую единицу длины.

Обратите внимание! Эти цифры справедливы только для условий, которые имеются в вакууме.

Формула значения постоянной

Но в физике для более простого способа решения задач используется округленное значение — 300 000 000 м/c.
Это правило в нормальных условиях касается всех объектов, а также рентгеновских лучей, гравитационных и световых волн видимого для нас спектра. Кроме этого ученые доказали, что частицы, обладающие массой, могут приближаться к скорости светового луча. Но они не в состоянии достичь ее или превысить.

Обратите внимание! Максимальная скорость, приближенная к световой, была получена при исследовании космических лучей, разгоняемых в специальных ускорителях.

Стоит отметить, что эта физическая константа зависит от того, в какой среде она измеряется, а именно от показателя преломления. Поэтому ее реальный показатель может разниться в зависимости от частот.

Как посчитать значение фундаментальной константы

На сегодняшний день существуют различные методы определения СРС. Это могут быть:

  • астрономические способы;
  • усовершенствованный метод Физо. Здесь зубчатое колесо заменяют на современный модулятор.

Обратите внимание! Ученые доказали, что показатели СРС в воздухе и в вакууме практически совпадают. А воде он меньше примерно на 25%.

Для расчета величины распространения светового луча используют следующую формулу.

Формула для расчета скорости света

Эта формула подходит для расчета в вакууме.

Заключение

Свет в нашем мире очень важен и тот момент, когда ученые смогут доказать возможность существования сверхсветовых скоростей сможет полностью изменить наш привычный мир. Что это открытие будет значить для людей даже сложно оценить. Но однозначно, это будет невероятный прорыв!

Как подобрать и установить датчики объема для автоматического управления светом
Самодельные регулируемые транзисторные блоки питания: сборка, применение на практике

(в т. ч. световых); одна из фундам. физ. постоянных; представляет собой предельную скорость распространения любых физ. воздействий (см. Относительности теория )и инвариантна при переходе от одной системы отсчёта к другой.

С. с. в среде с" зависит от показателя преломления среды n, различного для разных частот v (Дисперсия света): . Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идёт не о монохроматич. свете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с" , всегда измеряют групповую С. с. либо т. н. с к о р о с т ь сигнала, или скорость передачи энергии, только в нек-рых спец. случаях не равную групповой.

Впервые С. с. определил в 1676 О. К. Рёмер (О. Ch. Roemer) по изменению промежутков времени между затмениями спутников Юпитера. В 1728 её установил Дж. Брадлей (J. Bradley), исходя из своих наблюдений аберрации света звёзд. В 1849 А. И. Л. Физо (А. Н. L. Fizeau) первым измерил С. с. по времени прохождения светом точно известного расстояния (базы); т. к. показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину, весьма близкую к с. В опыте Физо пучок света от источника S (рис. 1), отражённый полупрозрачным зеркалом N , периодически прерывался вращающимся зубчатым диском W , проходил базу MN (ок. 8 км) н, отразившись от зеркала М , возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр Е . По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение с = 313300 км/с В 1862 Ж. Б. Л. Фуко (J. В. L. Foucault) реализовал высказанную в 1838 идею Д. Араго (D. Arago), применив вместо зубчатого диска быстровращающееся (512 об/с) зеркало. Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на нек-рый малый угол (рис. 2). При базе всего в 20 м Фуко нашёл, что С. с. равна 298000 500 км/с. Схемы и осн. идеи опытов Физо и Фуко были многократно использованы в последующих работах по определению С. с. Полученное А. Майкельсоном (A. Michelson) (см. Майкельсона опыт )в 1926 значение км/с было тогда самым точным и вошло в интернац. таблицы физ. величин.

Рис. 1. Определение скорости света методом Физо .

Рис. 2. Определение скорости света методом вращающегося зеркала (методом Фуко): S - источник света; R - быстровращающееся зеркало; С - неподвижное вогнутое зеркало, центр которого совпадает с осью вращения Я (поэтому свет, отражённый С, всегда попадает обратно на R); М-полупрозрачное зеркало; L - объектив; Е - окуляр; RС - точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RС и обратно, и обратный ход пучка лучей через объектив L, который собирает отражённый пучок в точке S", а не вновь в точке S, как это было бы при неподвижном зеркале Л. Скорость света устанавливают, измеряя смещение SS" .

Измерения С. с. в 19 в. сыграли большую роль в , дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 сравнение С. с. одной и той же частоты v в воздухе и воде показало, что скорость в воде в соответствии с предсказанием волновой теории. Была также установлена связь оптики с теорией электромагнетизма: измеренная С. с. совпала со скоростью эл--магн. волн, вычисленной из отношения эл--магн. и эл--статич. единиц электрич. заряда [опыты В. Вебера (W. Weber) и Ф. Кольрауша (F. Kohlrausch) в 1856 и последующие более точные измерения Дж. К. Максвелла (J. С. Maxwell)]. Это совпадение явилось одним из отправных пунктов при создании Максвеллом в 1864-73 эл--магн. теории света.

В совр. измерениях С. с. используется модернизиров. метод Физо (модуляц. метод) с заменой зубчатого колеса на эл--оптич., ., интерференционный или к--л. иной модулятор света, полностью прерывающий или ослабляющий световой пучок (см. Модуляция света ).Приёмником излучения служит фотоэлемент пли фотоэлектронный умножитель .Применение лазера в качестве источника света, УЗ-модулятора со стабилизиров. частотой и повышение точности измерения длины базы позволили снизить погрешности измерений и получить значение км/с. Помимо прямых измерений С. с. по времени прохождения известной базы, широко применяются косвенные методы, дающие большую точность. Так, с помощью микроволнового вакуумиров. [К. Фрум (К. Froome), 1958] при длине волны излучения = 4 см получено значение км/с. С ещё меньшей погрешностью определяется С. с. как частное от деления независимо найденных и v атомарных или молекулярных спектральных линий . К. Ивенсон (К. Evenson) и его сотрудники в 1972 по цезиевому стандарту частоты (см. Квантовые стандарты частоты )нашли с точностью до 11-го знака частоту излучения СН 4 -лазера, а по криптоновому стандарту частоты - его длину волны (ок. 3,39 мкм) и получили ± 0,8 м/с. Решением Генеральной ассамблеи Международного комитета по численным данным для науки и техники - КОДАТА (1973), проанализировавшей все имеющиеся данные, их достоверность и погрешность, С. с. в вакууме принято считать равной 299792458 ±1,2 м/с.

Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретич. плане и для определения значении др. физ. величин, но и для практич. целей. К ним, в частности, относится определение расстояний по времени прохождения радио-или световых сигналов в радиолокации, оптической локации, светодальнометрии , в системах слежения ИСЗ и др.

Лит.: Вафиади В. Г., Попов Ю. В., Скорость света и ее значение в науке и технике, Минск, 1970; Тейлор В., Паркер В., Лангенберг Д., Фундаментальные константы и квантовая , пер. с англ., М., 1972. А. М. Бонч-Бруевич .

Скорость света в различных средах различается значительно. Сложность состоит в том, что человеческий глаз не видит его во всем спектральном диапазоне. Природа происхождения световых лучей интересовала ученых еще в древности. Первые попытки расчета скорости света были предприняты еще за 300 лет до н.э. В тот период ученые определили, что волна распространяется по прямой линии.

Быстрый ответ

Им удалось описать математическими формулами свойства и света и траекторию его движения. стала известной через 2 тысячи лет после проведения первых исследований.

Что такое световой поток?

Световой луч представляет собой электромагнитную волну в сочетании с фотонами. Под фотонами понимают простейшие элементы, которые также называют квантами электромагнитного излучения. Световой поток во всех спектрах невидим. Он не перемещается в пространстве в традиционном понимании этого слова. Для описания состояния электромагнитной волны с квантовыми частицами введено понятие показателя преломления оптической среды.

Световой поток переносится в пространстве в виде луча с малым поперечным сечением. Способ движения в пространстве выведен геометрическими методами. Это прямолинейный пучок, который на границе с различными средами начинает преломляться, формируя криволинейную траекторию. Ученые доказали, что максимальная скорость создается в вакууме, в других средах скорость движения может различаться в разы. Учеными разработана система, световой луч и выведенная величина в которой является основной для выведения и отсчета некоторых единиц СИ.

Немного исторических фактов

Примерно около 900 лет назад Авиценой было выдвинуто предположение, что независимо от номинала величины скорость света имеет конечное значение. Галилео Галилей пытался опытным путем вычислить скорость светового потока. С помощью двух фонариков экспериментаторы пытались засечь время, за которое световой пучок от одного объекта будет виден другому. Но такой эксперимент выявился неудачным. Скорость оказалась столь высока, что им не удалось засечь время задержки.

Галилео Галилей обратил внимание на то, что у Юпитера промежуток между затмениями четырех его спутников составил 1320 секунд. На основе этих открытий в 1676 году астроном из Дании Оле Ремер рассчитал скорость распространения светового пучка, как значение 222 тысячи км/сек. На тот период данное измерение было наиболее точным, но его не могли проверить земными мерками.

Через 200 лет Луизи Физо смог вычислить скорость движения светового луча опытным путем. Он создал специальную установку с зеркалом и зубчатым механизмом, который вращался на огромной скорости. Световой поток отражался от зеркала и через 8 км возвращался назад. При увеличении скорости колеса возникал тот момент, когда зубчатый механизм перекрывал луч. Таким образом, скорость луча была установлена, как 312 тысяч километров в секунду.

Фуко усовершенствовал это оборудование, уменьшив параметры за счет замены зубчатого механизма плоским зеркалом. У него точность измерений получилась наиболее приближенной к современному эталону и составила 288 тысяч метров в секунду. Фуко предпринял попытки рассчитать скорость света в инородной среде, взяв за основу воду. Физику удалось сделать вывод, что данная величина не постоянная и зависит от особенностей преломления в данной среде.

Вакуум представляет собой пространство, свободное от вещества. Скорость света в вакууме в системе Си обозначена латинской буквой C. Она является недостижимой. Ни один предмет нельзя разогнать до такого значения. Физики только предполагают, что может произойти с объектами, если они разгонятся до такой степени. Скорость распространения светового луча обладает постоянными характеристиками, она:

  • постоянная и конечная;
  • недостижимая и неизменная.

Знание этой константы позволяет вычислить, с какой максимальной скоростью объекты могут перемещаться в космосе. Величина распространения луча света признана фундаментальной постоянной. Она используется для характеристик пространства времени. Это предельно допустимое значение для движущихся частиц. Какая скорость света в вакууме? Современную величину получили посредством лабораторных измерений и математических подсчетов. Она равна 299.792.458 метров в секунду с точностью до ± 1,2 м/с . Во многих дисциплинах, в том числе в школьных, при решении задач используются приближенных вычисления. Берется показатель, равный 3 108 м/с.

Световые волны видимого человеку спектра и рентгеновские волны возможно разогнать до показаний, приближающихся до скорости распространения света. Они не могут сравняться с этой константой, а также превысить ее значение. Константа выведена на основе отслеживания поведения космических лучей в момент разгона их в специальных ускорителях. Она зависит от той инерциальной среды, в которой происходит распространение луча. В воде прохождение света ниже на 25%, а воздухе будет зависеть от температуры и давления на момент вычислений.

Все расчеты проведены с использованием теории относительности и закону причинности, выведенному Энштейном. Физик считает, что если объекты достигнут скорости 1 079 252 848,8 километров/час и превысят ее, то произойдут необратимые изменения в строении нашего мира, система поломается. Время начнет отсчитываться в обратном порядке, нарушая порядок событий.

На основе скорости светового луча выведено определение метра. Под ним понимают участок, который успевает пройти световой луч за 1/299792458 секунды. Не следует смешивать данное понятие с эталоном. Эталон метра - это специальное техническое устройство на кадмиевой основе со штриховкой, позволяющее видеть данное расстояние физически.